• 제목/요약/키워드: Color Transform Model

검색결과 59건 처리시간 0.025초

Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식 (Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features)

  • 고기영;김두영
    • 융합신호처리학회논문지
    • /
    • 제6권1호
    • /
    • pp.15-22
    • /
    • 2005
  • 본 논문은 CCD 칼라 영상을 이용하여 얼굴을 인식할 수 있는 방법을 제안한다. YCbCr 컬러모델에서 피부색에 대한 색상 정보와 적응적인 피부범위 확장을 통하여 얼굴후보영역을 추출하였다. 추출된 얼굴후보영역을 이용하여 곡선전개 방식의 초기곡선으로 사용하여 얼굴영역을 정확히 추출하였다. 얼굴의 특징점을 추출하기 위하여 얼굴영역에서 칼라정보를 이용한 Eye Map과 Mouth Map을 이용하였다. Log-polar변환의 중심점을 얻기 위하여 검출된 얼굴의 특징점을 이용하였다. 특징벡터를 추출하기 위하여 DCT, 웨이브렛 변환을 통하여 추출한 계수들을 이용하였다. 제안된 방법의 타당성을 검토하기 위하여 BP 학습알고리즘을 사용하는 신경망에서 얼굴인식을 수행하였다. 실험결과, 제안한 방법이 입력영상의 회전, 크기변화에 대하여 기존의 방법에 비하여 강인한 인식결과를 얻을 수 있었다.

  • PDF

베이지안 네트워크를 이용한 자동 화재 감지 시스템 (Automatic fire detection system using Bayesian Networks)

  • 정광호;고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.87-94
    • /
    • 2008
  • 본 논문에서는 실시간 화재 감지를 위해 비전 기반의 새로운 화재 감지 기법을 제안한다. 기존의 비전기반 화재감지 기법에서는 컬러정보와 픽셀들의 시간적인 변화량 검출을 위해 다수의 휴리스틱한 특징들을 적용함으로써 실험결과가 환경의 변화에 민감한 문제들이 존재했다. 또한 정확한 화재감지를 위해서 많은 연산을 수행함으로써 감지시간 길어지는 단점이 있었다. 이러한 문제점들을 극복하기 위해서 본 논문에서는 시간축 상에서 불규칙하게 변화하는 화재의 특성을 분석하고 이를 토대로 확률 모델을 구성하여 이를 베이지안 네트워크(Bayesian network)에 적용하는 새로운 방법을 제안한다. 우선, 배경 모델링과 컬러 모델을 적용하여 화재 후보 영역을 검출하고, 이 후보 영역에서 명암도에 평준화된 Red 색상의 왜도(skewness)와 웨이블릿 변환을 통하여 얻어진 3가지 고주파 성분의 왜도를 노드로 갖는 베이지안 네트워크를 구성하여 최종 화재를 감별한다. 실생활 환경에서 촬영된 화재 영상에 대한 실험 결과는 빠른 검출 속도와 우수한 화재 검출 성능을 보여주고 있다.

컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식 (Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy)

  • 김태희;강승호
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.972-980
    • /
    • 2022
  • 영상을 이용한 기계학습 기반의 나비 종 인식 기술은 나비 종의 다양성 및 개체 수, 종의 서식 분포 등을 파악하는데 관련 분야 종사자의 많은 시간과 비용 감소의 효과를 가져온다. 나비 종 분류의 정확성과 시간 효율을 높이기 위해 기계학습 모델의 입력으로 사용되는 여러 가지 특징들이 연구되었다. 그중 엔트로피 개념을 이용한 가지 길이 유사성 엔트로피나 색채 강도 엔트로피 방법이 푸리에 변환이나 웨이블릿 등 다른 특징들에 비해 높은 정확성과 적은 학습 시간을 보여주었다. 본 논문은 나비의 컬러 영상에 대한 RGB 색채 강도 엔트로피를 이용한 특징 추출 알고리즘을 제안한다. 또한 제안한 특징 추출 방법과 대표적인 앙상블 모델들을 결합한 나비 인식 시스템을 개발하고 성능을 평가한다.

이미지 처리 알고리즘을 이용한 무인 천일염 포집장치의 색상 검출 성능 향상에 관한 연구 (A Study on the Improvement of Color Detection Performance of Unmanned Salt Collection Vehicles Using an Image Processing Algorithm)

  • 김선덕;안병원;박경민
    • 해양환경안전학회지
    • /
    • 제28권6호
    • /
    • pp.1054-1062
    • /
    • 2022
  • 한국 천일염 생산 지역의 인구는 빠르게 고령화되고 있어 생산 노동자가 줄고 있는 추세이다. 소금 포집 작업은 천일염 생산과정에서 가장 많은 노동력을 필요로 한다. 기존의 포집 장치는 사람의 작동 및 운전이 필요하여 상당한 노동력이 필요해서, 천일염 무인포집장치를 개발하여 생산 노동자의 노동력을 감소시키고자 한다. 천일염 포집장치는 색상 검출을 통해 소금의 포집 상황과 염전에서의 위치를 파악하도록 설계되었기 때문에, 포집장치의 색상 검출 성능이 중요한 요소이다. 그래서 색상 검출 성능 향상을 위해 이미지 처리를 이용한 알고리즘을 연구하였다. 알고리즘은 입력 이미지를 크기 재조정, 회전 및 투시 변환을 이용하여 around-view 이미지를 생성하고, RoI를 설정하여 해당 영역만 HSV 색상 모델로 변환하고 논리곱 연산을 통해 색상 영역을 검출한다. 검출 된 색상영역은 형태학적 연산을 이용하여 검출 영역을 확장하고 노이즈를 제거하여 컨투어와 이미지 모멘트를 이용하여 검출영역의 면적을 계산하고 설정된 면적과 비교하여 염판에서 포집장치의 위치 경우를 결정한다. 성능 평가는 알고리즘을 적용한 최종 검출 색상의 계산 면적과 알고리즘의 각 단계의 검출 색상의 면적을 비교하여 평가하였다. 평가 결과 소금을 검출하는 흰색의 경우 최소 25%에서 최대 99% 이상, 빨간색의 경우 최소 44%에서 최대 68%, 파란색과 녹색은 평균적으로 각각 7%와 15% 검출면적 증가가 있어 색상 검출 성능이 향상되었음을 확인할 수 있었으며, 이를 무인 천일염 포집장치의 무인작업 수행을 위한 위치 확인에 적용 가능할 것으로 사료된다.

변환학습을 이용한 장면 분류 (The Combined Effect and Therapeutic Effects of Color)

  • 신성윤;신광성;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.338-339
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안한다. 이미지 분류를 위해 대형 이미지 데이터 세트 ImageNet에 대해 사전 학습 한 ResNet (ResNet) 모델을 사용하는 방법이다. CNN 모델의 이미지 분류 방법에 비해 분류 정확도 및 효율성을 크게 향상시킬 수 있다.

  • PDF

컬러 영상 위에서 DCT 기반의 빠른 문자 열 구간 분리 모델 (Fast Text Line Segmentation Model Based on DCT for Color Image)

  • 신현경
    • 정보처리학회논문지D
    • /
    • 제17D권6호
    • /
    • pp.463-470
    • /
    • 2010
  • 본 논문에서는 DCT 데이터에서 영상 데이터로의 해독 및 이진화 과정을 생략하고 컬러 영상의 DCT 관련 원자료를 사용하는 방법에 기반을 둔 매우 빠르고 안정적인 문자열 구간 분리 모형을 제안하였다. DCT 블록에 저장된 DC 및 3개의 주요 AC 변수들을 조합하여 축소된 저해상도 회색 영상을 만들고 횡렬 및 종렬 투영법을 통해 얻어진 픽셀 값의 히스토그램을 분석하여 문자 열 구간 사이에 존재하는 백색의 띠 공간을 찾아내었다. 이 과정 중 탐색되지 않은 문자 열 구간은 마코프 모델을 사용하여 숨겨진 주기를 찾아내어 복원하였다. 본 논문에 실험 결과를 제시하였으며 기존의 방법보다 약 40 - 100배 빠른 방법임을 입증하였다.

Coiflet Wavelet과 LoG 연산자를 이용한 자연이미지에서의 텍스트 검출 알고리즘 (Text Extraction Algorithm in Natural Image using LoG Operator and Coiflet Wavelet)

  • 신성;백영현;문성룡;신홍규
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.979-982
    • /
    • 2005
  • This paper is to be pre-processing that decides the text recognizability and quality contained in natural image. Differentiated with the existing studies, In this paper, it suggests the application of partially unified color models, Coiflet Wavelet and text extraction algorithm that uses the closed curve edge features of LoG (laplacian of gaussian)operator. The text image included in natural image such as signboard has the same hue, saturation and value, and there is a certain thickness as for their feature. Each color element is restructured into closed area by LoG operator, the 2nd differential operator. The text area is contracted by Hough Transform, logical AND-OR operator of each color model and Minimum-Distance classifier. This paper targets natural image into which text area is added regardless of the size and resolution of the image, and it is confirmed to have more excellent performance than other algorithms with many restrictions.

  • PDF

형태학과 색상 정보를 이용한 차선 인식 알고리즘 (Lane Detection Algorithm using Morphology and Color Information)

  • 배찬수;이종화;조상복
    • 대한전자공학회논문지SD
    • /
    • 제48권6호
    • /
    • pp.15-24
    • /
    • 2011
  • 지능형 자동차 시스템에 대한 인식이 높아지면서 차선 획득 알고리즘에 대해 많이 연구되고 있다. 일반적인 차선 인식에서 사용하는 경계선 추출을 사용하는 방법은 도로에서의 차선 검출에 좋은 결과를 가져 올 수 있다. 하지만 도로에 그림자, 혹은 가로 선 같은 다른 경계선이 검출 될 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 형태학적 연산을 적용하여 차선에 대한 정보를 추출하였다. 또한 HSV(Hue, Saturation, Value) 칼라 모델을 적용하여 색상에 대한 정보를 이용함으로써 한번 더 차선의 정보를 추출하였다. 추출된 차선의 후보들을 이용하여 Hough 변환을 통해 차선이 존재할 가능성이 높은 차선 검출 영역을 설정하고, 이러한 차선 검출 영역 내에서 차선을 추출하는 방식을 사용함으로써 효과적으로 차선을 검출할 수 있었다.

비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식 (Fast Object Classification Using Texture and Color Information for Video Surveillance Applications)

  • 이슬람 모하마드 카이룰;자한 파라;민재홍;백중환
    • 한국항행학회논문지
    • /
    • 제15권1호
    • /
    • pp.140-146
    • /
    • 2011
  • 본 논문에서는 텍스쳐와 컬러 정보를 기반으로 비디오 감시를 위한 빠른 물체 분류 방법을 제안한다. 영상들로부터 SURF와 색 히스토그램의 국부적 패치들을 추출하여 그들의 장점을 이용한다. SURF는 명암 내용 정보를 제공하고 색 정보는 패치에 대한 특이성을 증강시킨다. SURF의 빠른 계산뿐만 아니라 객체의 색 정보를 활용한다. 국부적 특징을 이용하여 관심 영역 혹은 영상의 전역적 서술자를 생성하기 위해 Bag of Word 모델을 이용하고, 전역적 서술자를 분류하기 위해 Na$\ddot{i}$ve Bayes 모델을 이용한다. 또한 본 논문에서는 판별적인 기술자인 SIFT도 성능 분석한다. 네 종류의 객체에 대한 실험결과 95.75%의 인식률을 보였다.

Analysis of Screen Content Coding Based on HEVC

  • Ahn, Yong-Jo;Ryu, Hochan;Sim, Donggyu;Kang, Jung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.231-236
    • /
    • 2015
  • In this paper, the technical analysis and characteristics of screen content coding (SCC) based on High efficiency video coding (HEVC) are presented. For SCC, which is increasingly used these days, HEVC SCC standardization has been proceeded. Technologies such as intra block copy (IBC), palette coding, and adaptive color transform are developed and adopted to the HEVC SCC standard. This paper examines IBC and palette coding that significantly impacts RD performance of SCC for screen content. The HEVC SCC reference model (SCM) 4.0 was used to comparatively analyze the coding performance of HEVC SCC based on the HEVC range extension (RExt) model for screen content.