• Title/Summary/Keyword: Color Frame

Search Result 404, Processing Time 0.034 seconds

Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse (기계시각장치에 의한 토마토 작물의 병해엽 검출)

  • Lee, Jong-Whan
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.

Semi-Automatic Segmentation based on Color Information (색상 정보를 이용한 반자동 영상분할 기법)

  • 김민호;최재각;호요성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.619-622
    • /
    • 1999
  • This paper describes a new semi-automatic segmentation algorithm based on color information. Semi-automatic segmentation mainly consists of intra-frame segmentation and inter-frame segmentation. While intra-frame segmentation extracts video objects of interest from boundary information provided by the user and intensity information of the image, inter-frame segmentation partitions the image into the video objects and background by tracking the motion of video objects. For inter-frame segmentation, color information (Y, Cb and Cr) of the current frame can be used efficiently in order to find the exact boundary of the video objects. In this paper we propose a new region growing algorithm which can maximize the ability of region differentiation, while preserving features of each color component.

  • PDF

Deep Learning and Color Histogram based Fire and Smoke Detection Research

  • Lee, Yeunghak;Shim, Jaechang
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.116-125
    • /
    • 2019
  • The fire should extinguish as soon as possible because it causes economic loss and loses precious life. In this study, we propose a new atypical fire and smoke detection algorithm using deep learning and color histogram of fire and smoke. First, input frame images obtain from the ONVIF surveillance camera mounted in factory search motion candidate frame by motion detection algorithm and mean square error (MSE). Second deep learning (Faster R-CNN) is used to extract the fire and smoke candidate area of motion frame. Third, we apply a novel algorithm to detect the fire and smoke using color histogram algorithm with local area motion, similarity, and MSE. In this study, we developed a novel fire and smoke detection algorithm applied the local motion and color histogram method. Experimental results show that the surveillance camera with the proposed algorithm showed good fire and smoke detection results with very few false positives.

Overdrive Architecture using DWT and Color Conversion for Frame Memory Reduction (Frame Memory 축소를 위한 DWT와 Color Conversion 기반의 Overdrive 구조)

  • Byeon, Jin-Su;Kim, Hyeon-Seop;Kim, Do-Seok;Kim, Bo-Gwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.997-998
    • /
    • 2008
  • In this paper, we proposed a reduced memory overdrive architecture. Proposed overdrive architecture consists of 2D-DWT filter, BLI and Color Conversion block. For Frame Memory reduction we eliminated HH data in DWT-IDWT process and converted color space RGB into YCbCr. Consequently, we reduced Frame Memory about 50%.

  • PDF

A Key-Frame Extraction Method based on HSV Color Model for Smart Vehicle Management System (스마트 차량 관리 시스템을 위한 HSV 색상모델 기반의 키 프레임 추출 기법)

  • Kwon, Young-Wook;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.595-604
    • /
    • 2013
  • Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.

A Overdrive Technique Architecture for the Frame Memory Reduction based on DWT and Color Conversion (Frame Memory 축소를 위한 DWT와 Color Conversion 기반의 Overdrive 구조)

  • Byeon, Jin-Su;Kim, Hyeon-Seop;Kim, Do-Seok;Jeon, Eun-Seon;Hong, In-Seong;Kim, Bo-Gwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.85-91
    • /
    • 2009
  • Recently, the LCD has high market share in TV market. The use of motion images in portable devices like DMB, PMP and Cell Phone is growing rapidly. One of the technique of enhancing the LCD's characteristic which is the slow response time. But, the technique requires a lot of memory usage, because of the requirement of frame memory. In this paper, we propose a reduction method for the frame memory that is required for LCD overdrive. Proposed overdrive architecture based on modified DWT-Inverse DWT and Color Conversion. The proposed architecture has a considerable PSNR. At once, it uses 50% of frame memory size and reduces 15% of frame memory size compare with previous architecture. The design was implemented using Xilinx Vertex4 and had 2172 Slice except Memory.

Face Detection Algorithm for Video Conference Camera Control (화상회의 카메라 제어를 위한 안면 검출 알고리듬)

  • 온승엽;박재현;박규식;이준희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.218-221
    • /
    • 2000
  • In this paper, we propose a new algorithm to detect human faces for controling a camera used in video conference. We model the distribution of skin color and set up the standard skin color in YIQ color space. An input video frame image is segmented into skin and non-skin segments by comparing the standard skin color and each pixels in the input video frame. Then, shape filler is applied to select face segments from skin segments. Our algorithm detects human faces in real time to control a camera to capture a human face with a proper size and position.

  • PDF

Improvement of Frame Rate of Electro-Optical Sensor using Temporal Super Resolution based on Color Channel Extrapolation (채널별 색상정보 외삽법 기반 시간적 초해상도 기법을 활용한 전자광학 센서의 프레임률 향상 연구)

  • Noh, SangWoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.120-124
    • /
    • 2017
  • The temporal super resolution is a method for increasing the frame rate. Electro-optical sensors are used in various surveillance and reconnaissance weapons systems, and the spatial resolution and temporal resolution of the required electro-optical sensors vary according to the performance requirement of each weapon system. Because most image sensors capture images at 30~60 frames/second, it is necessary to increase the frame rate when the target moves and changes rapidly. This paper proposes a method to increase the frame rate using color channel extrapolation. Using a DMD, one frame of a general camera was adjusted to have different consecutive exposure times for each channel, and the captured image was converted to a single channel image with an increased frame rate. Using the optical flow method, a virtual channel image was generated for each channel, and a single channel image with an increased frame rate was converted to a color channel image. The performance of the proposed temporal super resolution method was confirmed by the simulation.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Genetic Characterization of Wolla Coat Color in Jeju Horses (제주마에서 월라 모색의 유전적 특성)

  • Kim, Nam-Young;Shin, Kwang-Ynu;Lee, Chong-Eon;Han, Sang-Hyun;Lee, Sung-Soo;Park, Yong-Sang;Ko, Moon-Suck;Hong, Hyun-Ju;Yang, Jae-Hyuk;Jang, Deok-Jee;Yang, Young-Hoon
    • Journal of Animal Science and Technology
    • /
    • v.54 no.5
    • /
    • pp.375-379
    • /
    • 2012
  • This study was carried out to define the "Wolla" coat color using 376 Jeju registered horses (white patched 142, solid coat color 234). Three major factors related to the white patches i.e ECA3-inversion for Tobiano, EDNRB 2 bp nucleotide substitution for frame Overo, and the KIT intron 16 single nucleotide polymorphism (SNP) for Sabino types of coat color were analyzed. It was found that out of 142 Jeju horses with white patches that have the genotype for ECA3-inversion (To) 140 horses were +/To heterozygous and 2 horses were To/To homozygous all Jeju horses with white patches had ECA3-inversion allele. However, there was no frame Overo or Sabino allele type in EDNRB and KIT intron 16 SNP in Jeju horses with white patches. As for 234 Jeju horses with a solid coat color, there was no ECA3-inversion allele related to the white patches. Thus, it could be considered that Wolla coat color with white patches in Jeju horses might have come from the Tobiano line in the genetic classification by coat color.