• Title/Summary/Keyword: Color Descriptor

Search Result 87, Processing Time 0.021 seconds

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

An Effective Similarity Measure for Content-Based Image Retrieval using MPEG-7 Dominant Color Descriptor (내용기반 이미지 검색을 위한 MPEG-7 우위컬러 기술자의 효과적인 유사도)

  • Lee, Jong-Won;Nang, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.837-841
    • /
    • 2010
  • This paper proposes an effective similarity measure for content-based image retrieval using MPEG-7 DCD. The proposed method can measure the similarity of images with the percentage of dominant colors extracted from images. As the result of experiments, we achieved a significant improvement of 18.92% with global DCD and 47.22% with local DCD in ANMRR than the result by QHDM. This result shows that the proposed method is an effective similarity measure for content-based image retrieval. Especially, our method is useful for region-based image retrieval.

Multiple Region-of-Interest Based Image Retrieval Method (다중 관심영역 기반 이미지 검색 방법)

  • Lee, Jong-Won;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.314-318
    • /
    • 2010
  • This paper proposes an image retrieval method based on the Multiple Region-of-Interest. In the proposed method, the image is segmented into blocks, among which the blocks overlapped with multiple ROIs are selected. The similarity of images is measured using the MPEG-7 dominant color descriptor(DCD) and considering the relative location of the overlapped blocks. The experimental results showed that the proposed method improves the retrieval performance than the previous methods using the global DCD or comparing the blocks at the same position. In addition, the method that considers the relative position of blocks overlapped with the multiple ROIs also showed a better performance than the existing methods.

Efficient Image Search using Advanced SURF and DCD on Mobile Platform (모바일 플랫폼에서 개선된 SURF와 DCD를 이용한 효율적인 영상 검색)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.

Development to Image Search Algorithm for JPEG2000 (JPEG2000기반 검색 알고리즘 개발)

  • Cho, Jae-Hoon;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, a new content-based color image retrieval method is proposed, in which both the color content and the spatial relationship of image have been taken into account. In order to represent the spatial distribution information of image, a disorder matrix, which has the invariance to the rotation and translation of the image content, has been designed. This is based on multi-resolution color-spatial information. We present our algorithm in the following section, and then verified the search results with comparison to other methods, such as color histogram, wavelet histogram, correlogram and wavelet correlogram. Experimental results with various types of images show that the proposed method not only achieves a high image retrieval performance but also improve the retrieval precision.

  • PDF

Improvement Method of Tracking Speed for Color Object using Kalman Filter and SURF (SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 속도 향상 방법)

  • Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.336-344
    • /
    • 2012
  • As an important part of the Computer Vision, the object recognition and tracking function has infinite possibilities range from motion recognition to aerospace applications. One of methods to improve accuracy of the object recognition, are uses colors which have robustness of orientation, scale and occlusion. Computational cost for extracting features can be reduced by using color. Also, for fast object recognition, predicting the location of the object recognition in a smaller area is more effective than lowering accuracy of the algorithm. In this paper, we propose a method that uses SURF descriptors which applied with color model for improving recognition accuracy and combines with Kalman filter which is Motion estimation algorithm for fast object tracking. As a result, the proposed method classified objects which have same patterns with different colors and showed fast tracking results by performing recognition in ROI which estimates future motion of an object.

Hardware Implementation of Moving Picture Retrieval System Using Scene Change Technique (장면 전환 기법을 이용한 동영상 검색 시스템의 하드웨어 구현)

  • Kim, Jang-Hui;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • The multimedia that is characterized by multi-media, multi-features, multi-representations, huge volume, and varieties, is rapidly spreading out due to the increasing of application domains. Thus, it is urgently needed to develop a multimedia information system that can retrieve the needed information rapidly and accurately from the huge amount of multimedia data. For the content-based retrieval of moving picture, picture information is generally used. It is generally used when video is segmented. Through that, it can be a structural video browsing. The tasking that divides video to shot is called video segmentation, and detecting the cut for video segmentation is called cut detection. The goal of this paper is to divide moving picture using HMMD(Hue-Mar-Min-Diff) color model and edge histogram descriptor among the MPEG-7 visual descriptors. HMMD color model is more familiar to human's perception than the other color spaces. Finally, the proposed retrieval system is implemented as hardware.

Implementation of Object Feature Extraction within Image for Object Tracking (객체 추적을 위한 영상 내의 객체 특징점 추출 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.113-116
    • /
    • 2018
  • This paper proposes a mobile image search system which uses a sensor information of smart phone, and enables running in a variety of environments, which is implemented on Android platform. The implemented system deals with a new image descriptor using combination of the visual feature (CEDD) with EXIF attributes in the target of JPEG image, and image matching scheme, which is optimized to the mobile platform. Experimental result shows that the proposed method exhibited a significant improved searching results of around 80% in precision in the large image database. Considering the performance such as processing time and precision, we think that the proposed method can be used in other application field.

Hierarchical Graph Based Segmentation and Consensus based Human Tracking Technique

  • Ramachandra, Sunitha Madasi;Jayanna, Haradagere Siddaramaiah;Ramegowda, Ramegowda
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.67-90
    • /
    • 2019
  • Accurate detection, tracking and analysis of human movement using robots and other visual surveillance systems is still a challenge. Efforts are on to make the system robust against constraints such as variation in shape, size, pose and occlusion. Traditional methods of detection used the sliding window approach which involved scanning of various sizes of windows across an image. This paper concentrates on employing a state-of-the-art, hierarchical graph based method for segmentation. It has two stages: part level segmentation for color-consistent segments and object level segmentation for category-consistent regions. The tracking phase is achieved by employing SIFT keypoint descriptor based technique in a combined matching and tracking scheme with validation phase. Localization of human region in each frame is performed by keypoints by casting votes for the center of the human detected region. As it is difficult to avoid incorrect keypoints, a consensus-based framework is used to detect voting behavior. The designed methodology is tested on the video sequences having 3 to 4 persons.