• Title/Summary/Keyword: Colon cancer cells

Search Result 551, Processing Time 0.031 seconds

Separation and Purification of Antioxidant Peptide from Fermented Whey Protein by Lactobacillus rhamnosus B2-1

  • Hao Guo;Lei Fan;Lin Ding;Wenqin Yang;Chuangang Zang;Hong Guan
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.10-24
    • /
    • 2023
  • In this study, a antioxidant activity peptide fraction was separated and purified from metabolites of whey protein fermented by Lactobacillus rhamnosus B2-1. The fermentation sample was separated by macroporous resin D101 and Sephadex G-15. The collected fractions were tested for antioxidant and antitumor activities. In order to test the antioxidant activity of fractions, Hydroxyl (·OH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and Oxygen Radical Absorbance Capacity (ORAC) were used. The final purified peptide B11 showed highest ABTS and ·OH radical scavenging rate by 84.36±1.89% and 62.43±2.64%, respectively, and had an ORAC activity of 1,726.44±2.76 μM Trolox equivalent/g. Further, the inhibitory effect of B11 on the proliferation of LoVo human colon cancer cells, KB and Cal-27 human oral cancer cells were enhanced with increasing concentrations of B11. B11 contains 51.421% amino acids, with Glu and Asp being the major constituents. In this study, we obtained peptide fraction B11 with antioxidant activity, which is promising for development.

Cytotoxicity of a Novel Biphenolic Compound, Bis(2-hydroxy-3-tert-butyl-5-methylphenyl)methane against Human Tumor Cells In vitro

  • Choi, Sang-Un;Kim, Kwang-Hee;Kim, Nam-Young;Choi, Eun-Jung;Lee, Chong-Ock;Son, Kwang-Hee;Kim, Sung-Uk;Bok, Song-Hae;Kim, Young-Kook
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.286-291
    • /
    • 1996
  • Phenolic compounds are prevalent as toxins or environmental pollutants, but they are also widely used as drugs for various purpose including anticancer agent. A novel biphenolic compound, bis(2-hydroxy-3-tert-butyl-5-methylphenyl)methane (GERI-BPO02-A) was isolated from the fermentation broth of Aspergillus fumigatus F93 previously, and it has revealed cytotoxicity against human solid tumor cells. Its effective doses that cause 50% inhibition of cell growth in vitro against non-small cell lung cancer cell A549, ovarian cancer cell SK-OV-3, skin cancer cell SK-MEL-2 and central nerve system cancer cell XF498 were 8.24, 10.60, 8.83, $9.85\mug/ml$ respectively. GERI-BPO02-A has also revealed cytotoxicity against P-glycoproteinexpressed human colon cancer cell HCT15 and its multidrug-resistant subline HCT15/CL02, and its cytotoxicity was not affected by P-glycoprotein. We have also tested cytotoxicities of structurally related compounds of GERI-BPO02-A such as diphenylmethane, 1,1-bis(3,4dimethylphenyl)ethane, 2,2-diphenylpropane, 2-benzylpyridine, 3-benzylpyridine, $4,4^I-di-tert-butylphenyl$, bibenzyl, $2,2^I-dimethylbibenzyl$, cis-stilbene, trans-stilbene, 3-tert-butyl-4-hydroxy-5-methylphenyisulfide, sulfadiazine and sulfisomidine for studying of structure and activity relationship, and from these data we could suppose that hydroxyl group of GERI-BPO02A conducted important role in its cytotoxicity.

  • PDF

Study on the Safety of Kamikaekyuk-tang Ethanol Extract (가미계격탕 주정추출물의 안전성에 대한 연구)

  • Lee, Eun-Ok;Seo, Nam-Jun;Jung, Hee-Jae;Kang, Jong-Gu;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.799-804
    • /
    • 2009
  • Kamikaekyuk-tang(KMKKT), a formula of ten Oriental herbs, was orientally designed to promote vital energy, to remove blood stasis, and to decrease inflammation for treating cancers. KMKKT and its component had potent antiandrogen and androgen receptor activities in prostate cancer and also inhibited angiogenesis induced by basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells and suppressed the tumor growth in LLC-bearing mice, and liver metastasis of colon 26-L5 cancer cells, suggesting a potent cancer preventive agent. Nevertheless, there is no safety study of KMKKT before clinical trial so far. Thus, in the current study, we investigated the toxicity about ethanol-extracted KMKKT. Male and female Spraque Dawley (SD) rats were given orally by KMKKT at 250, 500, and 1000 mg/kg for 4 weeks. Mortality, clinical signs and measured change of body weight, food consumption and water consumption were observed. In addition, we performed ophthalmologic, urinary, hematological, blood serum biochemical and histopathological examination. Any general toxicity was not found in KMKKT treated group. Also, there were no significant differences in the parameters such as body weight, food consumption and water consumption, a lot of urine and blood factor levels except WBC, MCHC and Ca level compared with control group. Although WBC and MCHC were elevated in female rats and Ca level was decreased in male rats, these were within normal ranges. Finally, we determined that maximum tolerated dose (MTD) was 1000 mg/kg and no observed adverse effect level (NOAEL) was 500 mg/kg. Taken together, these results demonstrated that KMKKT is very safe to SD rats.

Cell Growth Inhibitory Effect of Tissue Cultured Root of Wild Panax ginseng C.A. Mayer Extract on Various Cancer Cell Lines

  • Park, Jeong-Sook;Lee, Tae-Woong;Han, Kun
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study was performed to investigate the cell growth inhibitory effect of tissue cultured root of wild Panax ginseng C.A. Mayer (tcwPG). The human stomach carcinoma cell line, MKN 74, was incubated with 70% EtOH extract of tcwPG or Panax ginseng C.A. Mayer (PG) for 24 hrs. tcwPG inhibited cell growth at a concentration of $250{\mu}g/ml$. However, Panax ginseng extract did not inhibit cell growth at the same concentration. We also tested the ethyl acetate and $H_2O$ fractions of tcwPG. The inhibitory effect of the ethyl acetate fraction on cell proliferation in MKN 74 cells was more potent than that of the crude extract, and the inhibitory effect of the $H_2O$ fraction was less than that of the ethyl acetate fraction. When we separated tcwPG into polar and non-polar saponin fractions and then measured cell growth inhibition, the non-polar saponin in tcwPG exhibited cytotoxicity. To compare the effects of tcwPG on various cancer cell lines, we measured cytotoxicity in MKN 74 (stomach cancer cell line), SW 620 (colon cancer cell line) and PC 3 (prostate cancer cell line). All three cell lines showed cell growth inhibition, and the cell growth inhibitory effects were not quite different in the various cell lines. The non-polar saponins of tcwPG arrested PC 3 cells at G1-phase as did Panax ginseng.

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.

Anti-carcinogenic effects of non-polar components containing licochalcone A in roasted licorice root

  • Park, So Young;Kim, Eun Ji;Choi, Hyun Ju;Seon, Mi Ra;Lim, Soon Sung;Kang, Young-Hee;Choi, Myung-Sook;Lee, Ki Won;Yoon Park, Jung Han
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Licorice has been shown to possess cancer chemopreventive effects. However, glycyrrhizin, a major component in licorice, was found to interfere with steroid metabolism and cause edema and hypertension. The roasting process of licorice modifies the chemical composition and converts glycyrrhizin to glycyrrhetinic acid. The purpose of this study was to examine the anti-carcinogenic effects of the ethanol extract of roasted licorice (EERL) and to identify the active compound in EERL. MATERIALS/METHODS: Ethanol and aqueous extracts of roasted and un-roasted licorice were prepared. The active fraction was separated from the methylene chloride (MC)-soluble fraction of EERL and the structure of the purified compound was determined by nuclear magnetic resonance spectroscopy. The anti-carcinogenic effects of licorice extracts and licochalcone A was evaluated using a MTT assay, Western blot, flow cytometry, and two-stage skin carcinogenesis model. RESULTS: EERL was determined to be more potent and efficacious than the ethanol extract of un-roasted licorice in inhibiting the growth of DU145 and MLL prostate cancer cells, as well as HT-29 colon cancer cells. The aqueous extracts of un-roasted and roasted licorice showed minimal effects on cell growth. EERL potently inhibited growth of MCF-7 and MDA-MB-231 breast, B16-F10 melanoma, and A375 and A2058 skin cancer cells, whereas EERL slightly stimulated the growth of normal IEC-6 intestinal epithelial cells and CCD118SK fibroblasts. The MC-soluble fraction was more efficacious than EERL in inhibiting DU145 cell growth. Licochalcone A was isolated from the MC fraction and identified as the active compound of EERL. Both EERL and licochalcone A induced apoptosis of DU145 cells. EERL potently inhibited chemically-induced skin papilloma formation in mice. CONCLUSIONS: Non-polar compounds in EERL exert potent anti-carcinogenic effects, and that roasted rather than un-roasted licorice should be favored as a cancer preventive agent, whether being used as an additive to food or medicine preparations.

Involvement of ROS in Curcumin-induced Autophagic Cell Death

  • Lee, Youn-Ju;Kim, Nam-Yi;Suh, Young-Ah;Lee, Chu-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 112 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell. However, ROS-dependent activation of ERK1/2 and p38 MAPK, but not JNK, might not be involved in the curcumin-induced autophagy.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.

The Anti-Inflammatory Effect of IH-901 in HT-29 Cells

  • Lee, Seung-Min;Kim, Ki-Nam;Kim, Yu-Ri;Kim, Hye-Won;Shim, Boo-Im;Lee, Seung-Ho;Bae, Hak-Soon;Kim, In-Kyoung;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.254-261
    • /
    • 2007
  • 20-O-($\beta$-D-Glucopyranosyl)-20 (S)-protopanaxadiol (IH-901) is one of the major metabolites of ginsenosides from Panax ginseng, and is suggested that IH-901 has been associated with various pharmacological and physiological activities. In this study, we demonstrate that IH-901 induced anti-inflammation in HT-29 human colon adenocarcinoma cells. Our results showed that IH-901 inhibited cell proliferation of HT-29 in a time- and dose-dependent manner. We also found that IH-901 was significantly decreased expression of iNOS compared with non-treated. We observed effect of IH-901 related with inflammatory genes using by cDNA microarray. We were known that the 34 inflammatory genes such as E2F, CDK6, TNF-$\alpha$, and PKC were down-regulated. Thus, these results suggest that IH-901 may have a potential preventive factor to improving cancer induced by chronic inflammation.

Demethoxycurcumin from Curcuma longa Rhizome Suppresses iNOS Induction in an in vitro Inflamed Human Intestinal Mucosa Model

  • Somchit, Mayura;Changtam, Chatchawan;Kimseng, Rungruedi;Utaipan, Tanyarath;Lertcanawanichakul, Monthon;Suksamrarn, Apichart;Chunglok, Warangkana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1807-1810
    • /
    • 2014
  • Background: It is known that inducible nitric oxide synthase (iNOS)/nitric oxide (NO) plays an integral role during intestinal inflammation, an important factor for colon cancer development. Natural compounds from Curcuma longa L. (Zingiberaceae) have long been a potential source of bioactive materials with various beneficial biological functions. Among them, a major active curcuminoid, demethoxycurcumin (DMC) has been shown to possess anti-inflammatory properties in lipopolysaccharide (LPS)-activated macrophages or microglia cells. However, the role of DMC on iNOS expression and NO production in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study concerned inhibitory effects on iNOS expression and NO production of DMC in inflamed human intestinal Caco-2 cells. An in vitro model was generated and inhibitory effects on NO production of DMC at 65 ${\mu}M$ for 24-96 h were assessed by monitoring nitrite levels. Expression of iNOS mRNA and protein was also investigated. DMC significantly decreased NO secretion by 35-41% in our inflamed cell model. Decrease in NO production by DMC was concomitant with down-regulation of iNOS at mRNA and protein levels compared to proinflammatory cytokine cocktail and LPS-treated controls. Mechanism of action of DMC may be partly due to its potent inhibition of the iNOS pathway. Our findings suggest that DMC may have potential as a therapeutic agent against inflammation-related diseases, especially in the gut.