• 제목/요약/키워드: Colloidal Crystals

검색결과 26건 처리시간 0.018초

Structure, stability and applications of colloidal crystals

  • Yanagioka, Masaki;Frank, Curtis W.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.97-107
    • /
    • 2008
  • This article presents an overview of current research activities that center on colloidal crystals resulting from self-assembly of surface-charged nanoparticles. It is organized into three parts: the first part discusses characterization of colloidal structures, the second part describes colloidal stability from the rheological aspects of colloidal crystals suspended in medium, and the third part highlights polymerized colloidal crystals as a promising application. Finally, we briefly discuss the directions of future research in this area.

Multiple-Layered Colloidal Assemblies via Dipping Method with an External Electric Field

  • Im, Sang-Hyuk;Park, O-Ok;Kwon, Moo-Hyun
    • Macromolecular Research
    • /
    • 제11권2호
    • /
    • pp.110-114
    • /
    • 2003
  • When using the dipping method for crystal formation, mono-layered colloidal crystal structures depend upon the lift-up rate of a glass substrate. The mono-layered colloidal crystals showed the highest quality when the glass substrate was raised at a rate of 3 mm/min at 25 $^{\circ}C$ in a 1 wt% polystyrene colloidal suspension (ethanol medium). In addition, in order to obtain multiple-layered colloidal crystals, an external electric Held was introduced. Multiple-layered colloidal crystals were successfully obtained via this method. The colloidal particles were well ordered over large areas and assembled into a homogeneous structure.

3차원 콜로이드 광결정의 고속 제작 및 응용 (Quick Fabrication of Three Dimensional Colloidal Crystals and Their Applications)

  • 이수진;임상혁
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.640-643
    • /
    • 2013
  • 폴리스티렌 콜로이드 에멀젼 용액에서 물이 증발하게 되면 순간적으로 폴리스티렌 콜로이드 입자들이 물 표면으로 튀어나오게 되며 이러한 입자들 간의 모세관력에 의해 자기조립이 일어나게 되는데, 폴리스티렌 입자의 경우 유효밀도가 물 보다 작아 물 표면 위에 3차원 광결정을 형성하게 된다. 본 논문에서는 이러한 현상을 젖음성이 있는 제한된 공간을 가지는 구조를 가지는 유리기판 위에서 일어나도록 함으로써, 3차원의 폴리스티렌 콜로이드 결정이 고속으로 생성되고 기판위로 옮겨질 수 있도록 고안하였다. 고속으로 제작된 폴리스티렌 콜로이드 광결정은 폴리스티렌 입자의 크기 및 광결정 필름의 입사각을 조절하여 가시광 전체 영역의 빛을 선택적으로 반사하는 광필터로 적용해 보았다.

Colloidal Optics and Photonics: Photonic Crystals, Plasmonics, and Metamaterials

  • Jaewon Lee;Seungwoo Lee
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.608-637
    • /
    • 2023
  • The initial motivation in colloid science and engineering was driven by the fact that colloids can serve as excellent models to study atomic and molecular behavior at the mesoscale or microscale. The thermal behaviors of actual atoms and molecules are similar to those of colloids at the mesoscale or microscale, with the primary distinction being the slower dynamics of the latter. While atoms and molecules are challenging to observe directly in situ, colloidal motions can be easily monitored in situ using simple and versatile optical microscopic imaging. This foundational approach in colloid research persisted until the 1980s, and began to be extensively implemented in optics and photonics research in the 1990s. This shift in research direction was brought by an interplay of several factors. In 1987, Yablonovitch and John modernized the concept of photonic crystals (initially conceptualized by Lord Rayleigh in 1887). Around this time, mesoscale dielectric colloids, which were predominantly in a suspended state, began to be self-assembled into three-dimensional (3D) crystals. For photonic crystals operating at optical frequencies (visible to near-infrared), mesoscale crystal units are needed. At that time, no manufacturing process could achieve this, except through colloidal self-assembly. This convergence of the thirst for advances in optics and photonics and the interest in the expanding field of colloids led to a significant shift in the research paradigm of colloids. Initially limited to polymers and ceramics, colloidal elements subsequently expanded to include semiconductors, metals, and DNA after the year 2000. As a result, the application of colloids extended beyond dielectric-based photonic crystals to encompass plasmonics, metamaterials, and metasurfaces, shaping the present field of colloidal optics and photonics. In this review we aim to introduce the research trajectory of colloidal optics and photonics over the past three decades; To elucidate the utility of colloids in photonic crystals, plasmonics, and metamaterials; And to present the challenges that must be overcome and potential research prospects for the future.

Fabrication of Wafer-scale Polystyrene (2+1) Dimensional Photonic Crystal Multilayers Via the Layer-by-layer Scooping Transfer Technique

  • 도영락;오정록;이경남
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.11.1-11.1
    • /
    • 2011
  • We have developed a simple synthetic method for fabricating a wafer-scale colloidal crystal film of 2D crystals in a 1D stack based on a combination of two simple processes : the self-assembly of polystyrene (PS) nanospheres at the water-air interface and the layer-by-layer (LbL) scooping transfer technique. The main advantage of this approach is that it allows excellent control of the thickness (at a layer level) of the crystals and the formation of a vertical crack-free layer over a wafer-scale (4 inch). We investigate the optical and morphological properties of the PhC multilayers fabricated using various mono-sized colloidal crystals (250, 300, 350, 420, 580, 720, and 850 nm), and mixed binary colloidal crystals (300/350 and 250/350 nm).

  • PDF

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

Nano-Bio 융합 연구를 위한 콜로이드 공학 (Colloidal Engineering for Nano-Bio Fusion Research)

  • 문준혁;이기라;이상엽;소재현;김영석;윤여균;조영상;양승만
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.647-659
    • /
    • 2008
  • 콜로이드는 거시적으로 균일한 성질을 갖는 입자분산계이다. 콜로이드 입자는 다양한 입자분산계의 모델로서 많은 기초연구가 이루어져 왔을 뿐만 아니라, 산업적으로 다양하게 응용이 되었다. 최근에는 나노-바이오 관련 연구에 적용되어 새롭게 각광을 받고 있는 나노 소재중 하나이다. 본 총설에서는 입자 분산계의 정의 및 분류에 대해 간략히 기술하고, 나노-바이오 응용을 위한 표면 성질 및 표면 개질방법에 대해 다룰 것이다. 또한, 기존의 구형의 입자분산계에서 더 나아가, 모양과 크기가 제어된 입자 분산계의 합성에 관한 최근 결과를 소개하였다. 마지막으로, 콜로이드 입자의 나노-바이오 응용분야로서, 금속 콜로이드 잉크와, 3차원 콜로이드 결정을 활용한 나노-바이오 센서, 및 2차원 콜로이드 구조를 이용한 패턴제작과 응용 연구에 대해 살펴보았다.

Fabrication and Optical Characterization of Colloidal 3-D Photonic Crystals

  • N. Y. Ha;Y. Woo;Park, Byungchoo;J. W. Wu
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.15-16
    • /
    • 2003
  • 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Kim, Seul-Gi;Seo, Young-Gon;Cho, Young-Jin;Shin, Jin-Sub;Gil, Seung-Chul;Lee, Won-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1891-1896
    • /
    • 2010
  • Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.