• Title/Summary/Keyword: Collision speed

Search Result 508, Processing Time 0.033 seconds

Comparison of Simulation Models for Train Buffer Couplings (연결기용 완충기의 시뮬레이션 모델 비교)

  • Jang, Hyeon-Mog;Kim, Nam-Wook;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2010
  • Coupling systems for trains need more complicated buffer equipments than existing systems because the recent tendency of the regulations enforces trains to be safe for collisions even when the driving speed is higher than before. Using hydraulic buffer is an effective way to satisfy the requirement while it causes the increase of the cost for the coupling system. In this study, we introduce the methodology to build a simulation model for the hydraulic buffer, which could be installed into the coupling systems. In the simulation model of the hydraulic buffer, the reacting force is determined by both buffer stroke and speed whereas the elastic buffer model is designed by using only the buffer stroke in other studies. The simulation results with the advanced hydraulic buffer model shows that the simulating results can be close the real experimental results around 10%, and, if we considers friction forces, the simulation calculates the maximum force within 10% comparing to the experimental.

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

A Study on Variable Speed Limit Considering Wind Resistance on Off-Shore Bridge (해상교량의 풍하중을 고려한 제한 속도 도출 방안)

  • Lee, Seon-Ha;Kang, Hee-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.75-87
    • /
    • 2004
  • Along the seashore regions in Korea, though strong winds with very large strength are frequently witnessed, no system which can provide appropriate speed information for driving vehicle has been introduced. The driving against strong winds could be very dangerous because of the high possibility of accidents such as rollover and collision. These accidents usually resulted from driver's forced driving try even in difficult situation for steering vehicle, and sometimes overspeed without consideration of wind impact to the vehicles. To reduce accident caused by strong winds, it is important to inform drivers of appropriate driving speeds by perceiving strong winds. By setting up WIS at the main points where strong winds frequently appear and using the variable message sign(VMS) connected to the on-line whether information system, it tis possible to provide desired speed information, which can maintain vehicles' tractive force and maximum running resistance. The case study is conducted on the case of Mokpo-Big-Bridge, which is under construction at Mokpo city. The result show that in case the annual average direction of wind is South and the wind speed is over 8m/hr, the desired speed, which is required in order for vehicles running to South direction to maintain the marginal driving power, is 60km/hr. In addition, for the case of a typhoon such as Memi generated in 2003 year, if wind speed had been 18m/sec in Mokpo city at that time, the running resistance at the speed of 40km/hr is calculated as 1131N. This resistance can not be overcome at the 4th gear(1054N) level, therefore, the gear of vehicles should be reduced down to the 3rd level. In this case, the appropriate speed is 40km/h, and at this point the biggest difference between running resistance and tractive force is generated.

Development of n Hybrid Bumper Beam Using Simulation (시뮬레이션을 이용한 하이브리드 범퍼 빔 개발)

  • Lee, J.K.;Kang, D.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF

A new Approach to Moving Obstacle Avoidance Problem of a Mobile Robot

  • 고낙용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.9-21
    • /
    • 1998
  • This paper a new solution approach to moving obstacle avoidance problem of a mobile robot. A new concept avoidability measure (AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function (VDF), is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF ,an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Investigation of Traffic Accident using Skid Mark (스키드마크를 이용한 교통사고 조사)

  • Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.113-120
    • /
    • 2010
  • In case the traffic accident occurs, skid mark is very important factor to calculate the car speed. Especially, for the purpose of objective and scientific inspection, traffic accidents should be appraised and inspected by righteous material evidences, computer simulation, and studies such as automobile engineering, traveling and collision accident dynamics, road and traffic engineering. In this paper, it displays the results of studying cases with the reasons of traffic accidents by analyzing and studying automobile kinetics, real traffic accidents and the results of in scientific and objective ways. After computer simulation result that it is proved that compared with unpacked road condition and packed road condition. unpacked road condition is shorter than packed road condition.

Development of a System for Transmitting a Navigator's Intention for Safe Navigation

  • Hong, Taeho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2014
  • For the past three decades, ship-to-ship collision accidents have steadily increased on the coast of South Korea by about 20% annually. Marine accidents have become more likely and more devastating in areas with increasing marine traffic and rising numbers of high-speed ships. Over 30% of the marine accidents in South Korea are concentrated in spring, since Korea's coast is often covered in dense fog at this time of the year. Fog is generated when a large temperature range exists within a day, and this daily temperature range has increased due to abnormal weather conditions. This research proposed a system for transmitting a navigator's intention utilizing electronic methods. A navigator's intention was expressed on the electronic navigation chart for easier understanding of the surrounding situation, and the effectiveness of the system was verified through practical tests.

Force-reflecting electronic power steering system using fuzzy logic (퍼지 로직을 이용한 힘반사형 전동 조향 장치)

  • 박창선;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Vehicle steering system determines the direction of a vehicle. A manual steering system consists of mechanical connections between the steering wheel and tires. Recent power steering system adds an actuator to help a driver to steer easily at low speed. However, at front collision, the driver can be injured by steering shaft and the power steering pump decreases the engine power. To solve these problems, electronic power steering system which connects the steering wheel and tires with electronic connection is proposed, that has advantages such as decrease of engine load and increase of driver safety reactive. Since the ratio between driver's steering torque and steering torque of tires can be controlled freely, the torque which is delivered from the road to the driver through tires and steering wheel can be reshaped to make the driver feel comfortable. In this paper, the ratio of delivering steering torque and the magnitude of force to be delivered from road to driver has been controlled using fuzzy controller, and it's effectiveness has been shown through simulation results.

  • PDF