• 제목/요약/키워드: Collision scenario

검색결과 102건 처리시간 0.026초

후방추돌평가 시험을 위한 가상환경 시나리오 개발연구 (A study on scenario in virtual environment for test about rear-end collision)

  • 백우경;김배영;김시우;정충민;송종원;서명원
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.17-21
    • /
    • 2011
  • Vehicle safety device such as active headrest and rear detection system has been developing as people are interested about rear end collision more than head on or than front. However, there is no any standard or criterion in order to evaluate vehicle safety device for rear end collision. Also there is no test protocol about rear end collision in vehicle experiment. Therefore, this research developed scenario for experiment about rear end collision in vehicle experiment. Also this research evaluated dangerousness about vehicle test and fitness about re-enacting rear end collision using scenario developed using commercial software (PC-Crash) which can re-enact vehicle collision in virtual vehicle experiment. Scenario developed according to statistics from National Highway Traffic Safety Administration and German In-Depth Accident Study. Scenario has twelve cases which composed of Re-LVS (Rear end Leading Vehicle Stop), Re-LVM (Rear end Lead Vehicle Moving) and scenario for evaluation about malfunction of active headrest.

Tag Anti-Collision Algorithms in Passive and Semi-passive RFID Systems -Part II : CHI Algorithm and Hybrid Q Algorithm by using Chebyshev's Inequality-

  • 범효;송인찬;장경희;신동범;이형섭
    • 한국통신학회논문지
    • /
    • 제33권8A호
    • /
    • pp.805-814
    • /
    • 2008
  • Both EPCglobal Generation-2 (Gen2) for passive RFID systems and Intelleflex for semi-passive RFID systems use probabilistic slotted ALOHA with Q algorithm, which is a kind of dynamic framed slotted ALOHA (DFSA), as the tag anti-collision algorithm. A better tag anti-collision algorithm can reduce collisions so as to increase the efficiency of tag identification. In this paper, we introduce and analyze the estimation methods of the number of slots and tags for DFSA. To increase the efficiency of tag identification, we propose two new tag anti-collision algorithms, which are Chebyshev's inequality (CHI) algorithm and hybrid Q algorithm, and compare them with the conventional Q algorithm and adaptive adjustable framed Q (AAFQ) algorithm, which is mentioned in Part I. The simulation results show that AAFQ performs the best in Gen2 scenario. However, in Intelleflex scenario the proposed hybrid Q algorithm is the best. That is, hybrid Q provides the minimum identification time, shows the more consistent collision ratio, and maximizes throughput and system efficiency in Intelleflex scenario.

한국형 고속전철 차체의 충돌안전도 평가 연구 (An Evaluation of Crashworthiness for the car-bodies of KHST)

  • 노규석;구정서;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.223-228
    • /
    • 2001
  • In this paper, crashworthiness of the KHST carbodies is evaluated by numerical simulation under the SNCF accident scenario (collision against a movable rigid mass of 15 ton at 110 kph) and the scenario of train-to-train collision at 30 kph. The numerical results of the several simulations, such as the accident collided against a deformable dump truck of 15 tons at 110 kph, the driver's dummy analysis using the integrated analysis method, and the accident of train-to-train collision for the first three units at 30 kph, show good performances in the viewpoint of energy absorption and survival space.

  • PDF

TGV-K 전체 차량의 충돌안전도 해석 연구 (Collision Analysis of the Full Rake TGV-K on Crashworthiness)

  • 구정서;송달호
    • 한국철도학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 1998
  • Described in this paper is the result of a study on collision analysis of TGV-K using 1-dimensional model for crashworthy design. Crashworthy design of the front end is very important because majority of the impact energy (more than 70%) is absorbed by the crush of the front end when the train is collided with an obstacle like a tank lorry. Guideline for the crashworthy design can be described from the collision analysis of the whole train using a 1-dimensional model. Since the headstock of TGV-K is not designed in a crashworthy point of view, a conceptual design of the headstock to improve crashworthiness is suggested and evaluated using 1-dimensional collision analysis. The suggested design, which adopts an energy absorber and a crashworthy headstock, shows a good behaviour on the accident scenario of SNCF (collision at 110 km/h against a movable rigid mass of 15 ton).

  • PDF

자율주행 차량의 차량 대 차량 통신에 기반한 충돌방지 활용 시나리오 개발 (Development of Collision Prevention Usage Scenario based on Vehicle-to-Vehicle Communication of Autonomous Vehicles)

  • 서현덕;권도영;신재민;최은혁;임헌국
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.251-257
    • /
    • 2022
  • 자율주행 차량은 ICT 기술의 도움으로, 운전자의 개입 없이 운행되는 차량을 의미하며 스마트 차량의 한 종류이다. 차량 안전 통신 기술(V2X)이 적용된 차량은 다양한 센서 혹은 타 차량/인프라에서 감지된 정보를 이용하여 운전자의 잠재적 위험 상황을 스마트 차량 스스로가 확실하고 빠르게 예측하도록 하여 보다 안정한 자율주행이 가능하도록 하는데 기여한다. 본 논문에서는 이러한 V2X 통신 기술 중 차량 대 차량 통신(V2V) 모사 통신 기술을 이용하여 자율주행 차량의 충돌 방지 활용 시나리오를 제시하고자 한다. V2V 모사 통신 기반 차량 충돌방지 시스템을 구현하였고 이를 이용하여 제시한 충돌 방지 활용 시나리오를 시연하였다. 제시된 충돌 방지 활용 시나리오는 현재에도 개발/적용을 위해 노력 중인 V2V 통신 기술의 하나의 응용 사례로 고려될 수 있을 것이다.

고속도로 주행 시 선행차량의 전방 긴급 장애물 회피에 따른 Car-to-Car Cut-out 시나리오 기반 AES 성능평가 방법 연구 (A Study on AES Performance Assessment Protocol based on Car-to-car cut-out Scenario According to front Emergency Obstacle Avoidance of Preceding Vehicle during Highway Driving)

  • 김진석;이동훈
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.84-90
    • /
    • 2022
  • With the popularization of autonomous driving technology, safety has emerged as a more important criterion. However, there are no assessment protocol or methods for AES (Autonomous Emergency Steering). So, this study proposes AES assessment protocol and scenario corresponding to collision avoidance Car-to-Car scenario of Euro NCAP in order to prepare for obstacles that appear after the emergency steering of LV (Leading Vehicle) avoiding obstacles in front of. Autoware-based autonomous driving stack is developed to test and simulate scenario in CARLA. Using developed stack, it is confirmed that obstacle avoidance is successfully performed in CARLA, and the AES performance of VUT (Vehicle Under Test) is evaluated by applying the proposed assessment protocol and scenario.

선수 충돌 상황별 손상거동에 관한 연구 (A Study on the Extents of Damage of a Bow Structure According to Collision Scenario)

  • 김귀미;김근원;신기수
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.266-271
    • /
    • 2012
  • The rescue methods for the marine casualties are limited due to the characteristics of operation environment of the vessel. Especially the most of marine accidents have been occurred at the bow structure of ship. Moreover the failure of bow structure may lead to catastrophic mishaps. In this paper, the extents of damage of a bow structure fracture subject to collision accident was investigated by using numerical method. The computer simulation approach by using Finite Element Method was employed to accomplish this goal. A finite element model, a 3D model of ship, has been utilized to evaluate damage of bow structure according to collision scenario. In conclusion, we have demonstrated that the plastic deformation occurred at the bow structure. Also it was shown that the collision angle clearly plays a role in determining amount of damage of ship structures.

전차선 지지 구조물에 대한 전동차 차체의 충돌 해석연구 (Collision Analysis of EMU Carbody against Overhead Line Structure)

  • 김진석;구정서;권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.11-17
    • /
    • 2006
  • In this paper, crashworthiness of EMU carbody against overhead line structure is numerically evaluated. The material of the EMU carbody is made of stainless steel(SS301L). The material of the overhead line structure(a portal-type) is structure steel (SS400). The EMU carbody is numerically analyzed under collision conditions such as upright side-on impact scenario and angled impact scenario to collide against overhead line structure(a portal-type) at 64.6 kph, respectively.

  • PDF

EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용 (Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU)

  • 김거영;구정서
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.333-340
    • /
    • 2011
  • 본 논문은 유럽 TSI와 국내철도차량안전기준에 정의된 건널목 충돌사고시나리오에서 요구하는 성능의 대형 변형체 장애물의 유한요소 모델에 대하여 2가지 종류의 모델을 개발하여 한국형 분산형 고속철도 차량에 적용하고 평가하였다. 규정에서 요구하는 대형 장애물은 기존 강체모델에서 현재의 변형체모델로 변경되었으며 규정에 정의된 방법으로 변형체 강성 값이 검증되어야 한다. 여러 번의 시뮬레이션을 통해 기준을 만족하는 균일한 밀도와 강성의 솔리드 형 장애물 모델과 균일하지 않은 셸 형 장애물 모델 등 2가지를 개발하였다. 본 연구에서 개발된 대형장애물을 사용하여 분산형 고속열차를 대상으로 규정의 대형장애물 충돌시뮬레이션을 수행하였고 그 결과를 평가하였다. 셸 형과 솔리드 형 장애물은 열차와 충돌 후 거동에 상당한 차이가 있었고, 셸 모델이 더 가혹한 결과를 나타내었다.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.