• Title/Summary/Keyword: Collision of Ship

Search Result 497, Processing Time 0.038 seconds

Prediction of Ships' Bow Structural Damage during Collisions (충돌시 선수구조의 손상추정에 관한 연구)

  • P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.92-102
    • /
    • 1992
  • Prediction of energy absorption for bow structure is important for a design of protective structures against collision. For the crushing behaviour of basic element of energy absorption, the plastic mechanism method is applied. The ship's crushing strength of bow section is obtained by summing the energy dissipated in all individual elements. The theoretical predictions are compared with experimental results for ship's bow models published with experimental results for ship's bow models published in the references, and it is observed that the present prediction method of crushing strength correlates well with the experimental results.

  • PDF

A Study on the Development the Maritime Safety Assessment Model in Korea Waterway

  • Park, Young-Soo;Kim, Jong-Sung;Aydogdu, Volkan
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.567-574
    • /
    • 2013
  • Although Korea coastal area has the increasing potential marine accident due to frequent ship's encounter, increased vessel traffic and large vessel, there is no specific model to evaluate the navigating vessel's risk considering the domestic traffic situation. The maritime transport environmental assessment is necessary due to the amended maritime traffic law. However, marine safety diagnosis is now carried out by foreign model. In this paper, therefore, we suggest a domestic traffic model reflecting the characteristics of korea coastal area and navigator's risk as we named PARK(Potential Assessment of Risk) model. We can evaluate the subjective risk by establishing the model and model output into maritime risk exposure system. To evaluate this model's effectiveness, we used ship handling simulation and applied, analyzed collision accident which occurred in korea coastal area. And also, we applied integrated to an ECDIS program for monitoring traffic risk of vessels with real time based AIS data and apply to evaluate traffic risk in busan harbor waterway. As a result, we could evaluate busan harbor waterway risk effectively.

Vessel Collision Analysis of an Underwater Slope using Coupled Eulerian-Lagrangian Scheme 1: Development of Analysis Model (Coupled Eulerian-Lagrangian 기법을 이용한 선박의 수중사면 충돌해석 1 : 해석모델의 개발)

  • Lee, Gyehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • In this study, the behaviors of a vessel and the ground during the vessel impacting an underwater slope that is part of an artificial protective island are analyzed using the coupled Eulerian-Lagrangian scheme. To consider the large deformation including the shear failure of soil, the Eulerian domain is used to model the ground and water, while the impacting objects are modeled as the Lagrangian domain. For efficiency, the mass scaling scheme is applied to the modeling of the impacting objects, and the ground is modeled by setting the Eulerian volume fraction values. To verify the applicability of the constructed model, a dynamic penetration anchor problem is analyzed. The impacting vessel is modeled using solid elements following the external shape of a container ship, and an analysis of a collision on the slope is performed. As a result, collision behaviors such as displacement, velocity, and dissipation energy are estimated, and the necessity of a parametric study as further research is established.

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

Collision Risk Assessment by using Hierarchical Clustering Method and Real-time Data (계층 클러스터링과 실시간 데이터를 이용한 충돌위험평가)

  • Vu, Dang-Thai;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The identification of regional collision risks in water areas is significant for the safety of navigation. This paper introduces a new method of collision risk assessment that incorporates a clustering method based on the distance factor - hierarchical clustering - and uses real-time data in case of several surrounding vessels, group methodology and preliminary assessment to classify vessels and evaluate the basis of collision risk evaluation (called HCAAP processing). The vessels are clustered using the hierarchical program to obtain clusters of encounter vessels and are combined with the preliminary assessment to filter relatively safe vessels. Subsequently, the distance at the closest point of approach (DCPA) and time to the closest point of approach (TCPA) between encounter vessels within each cluster are calculated to obtain the relation and comparison with the collision risk index (CRI). The mathematical relationship of CRI for each cluster of encounter vessels with DCPA and TCPA is constructed using a negative exponential function. Operators can easily evaluate the safety of all vessels navigating in the defined area using the calculated CRI. Therefore, this framework can improve the safety and security of vessel traffic transportation and reduce the loss of life and property. To illustrate the effectiveness of the framework proposed, an experimental case study was conducted within the coastal waters of Mokpo, Korea. The results demonstrated that the framework was effective and efficient in detecting and ranking collision risk indexes between encounter vessels within each cluster, which allowed an automatic risk prioritization of encounter vessels for further investigation by operators.

Prevention of Collision with Other Vessels Using Camera Sensors with Kalman Filter (칼만 필터가 적용된 카메라 센서를 이용한 타 선박과의 충돌 예방)

  • Dae-il Sung;Sung-Joo Kim;Young-Min Kim;Yun-Sung Jung;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.130-140
    • /
    • 2024
  • In this paper, we present a method of applying the kalman filter to control and correct errors in camera sensor recognition depending on the sea state environment. First, the specifications of the ship were described and the degree of error due to rolling was measured. After presenting the distance from the surface of the water to the sidelight required for simulation through PKMR-211, the ship selected as the model, error correction was performed using the camera error value as a variable in the feedback control system. In the experiment, the degree of rolling of the ship was expressed as variables 𝛼 and 𝛽, expressed in angles, and the angle change according to distance was compared. When comparing the error before and after applying the kalman filter in sea state 4, it decreased from +1.5556° to -1.1544° in red light regardless of distance, and the same result was confirmed in green light. Through this, calculations were performed considering the movement of the ship according to the maritime environment, and the future maneuverability of the ship was presented after error correction.

A study on the manoeuvrability of T/S SAEBADA by real sea trials (실선시험에 의한 새바다호의 조종 성능에 관한 고찰)

  • An, Young-Su;Kang, Il-Kwon;Kim, Hyung-Seok;Kim, Jung-Chang;Kim, Min-Seok;Jo, Hyo-Jae;Lee, Chun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.4
    • /
    • pp.289-295
    • /
    • 2005
  • This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the manoeuvrability of own ship. The actual manoeuvering characteristics of ship can be adequately judged from the results of typical ship trials manoeuvres. Author carried out sea trials based full scale for turning test, zig-zag test, spiral tests and crash-stop test at actual sea going condition. The turning circle manoeuvres were performed on starboard and port sides with $35^{\circ}$ rudder angle at the service speed, and Zig-zag procedures were performed on both sides with $10^{\circ}$ and $20^{\circ}$ rudder angle respectively. Spiral tests were carried out on the both sides and crash stop test was also carried out. The results from tests could be compared directly with the standards of manoeuverability of IMO and consequently the manoeuvring qualities of the ship is fully satisfied with its.

Marine traffic survey to improve safety of vessel traffic at Busan South Port (부산남항 선박통항 안전성 향상을 위한 해상교통량 조사)

  • Kim, Seok-Jae;Park, Moon-Gap;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.428-434
    • /
    • 2011
  • To establish a vessel safety management system for improving the safety of vessel's traffic and preventing vessel's traffic accidents, the state of marine traffic in the Busan South Port was investigated and analyzed as preliminary survey of the countermeasures. As a result of the study, there are 1,158 vessels in a day, 48 vessels in an hour, and the maximum traffic is about 118 vessels between 16:00 and 17:00 hours everyday, which requires to establish and operate a traffic control system necessarily for ensuring vessel's traffic safety. Furthermore, passages of tanker, passenger ship, cargo vessel and government vessel showed to sail along main traffic lane to be obtained enough sea depth at the survey area. However, passages of fishing vessel and launch showed to sail freely at all survey area owing to outstanding maneuverability and a shallow draft. Some vessels of launch sailed along main traffic lane, but other vessels crossed to sail it. The passages to cross main traffic lane is higher the risk of collision. Therefore, safety measures are urgently needed for the operation of the Busan South Port management system and the prevention of marine pollution.

A Study for the Evaluation of the Force by the Wind on the Ship at Anchoring (실선계측을 통한 묘박중인 선박의 풍압력 적용에 관한 연구)

  • Jung, Chang-Hyun;Kong, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • By the typhoon "MAEMI" in 2003, a lot of marine accidents such as stranding, collision etc. occurred to the vessels at anchor in "JINHAE MAN" which was considered one of the most safe sheltering anchorage in Korea. These accidents resulted from the dragging of anchor by the strong winds. It needs to compare the external forces with the holding powers of anchors to estimate if the anchor will be dragged or not. However, the calculation of the force by the wind on the ship, in particular, on the wind pressure area which changes by the swinging of her bow is not yet set on a thesis. Therefore, this paper verified that how many times the front wind pressure area should be applied to calculate the force by the wind on the ship at anchor by comparing and analyzing the numerical calculation with, the actual ship's data which was really dragged by the strong wind.

  • PDF

Analysis of Human Error Characterirstics of Navigator in Ship Maneuvering (선박조종에 나타난 해기사 인적오류 특성 분석)

  • Park, Deukjin;Yang, Hyeongseon;Yang, Wonjae;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.265-265
    • /
    • 2019
  • Marine accidents continue to occur every year due to human errors. The purpose of this study is to promote navigational safety by preventing ship collision accidents caused by human errors of behavior of navigators. There are two ways to manage human error caused by navigator's behavior. It is divided in individual approach and system approach, which is applied to situational awareness theory and Rasmussen's behavioral theory. This study investigated past marine accidents caused by human error and conducted experiments using ship handling simulators to identify these two behavioral characteristics. After analyzing two human error characteristics, we will propose a countermeasure in next study.

  • PDF