• Title/Summary/Keyword: Collision avoidance information

Search Result 337, Processing Time 0.031 seconds

Collective Navigation Through a Narrow Gap for a Swarm of UAVs Using Curriculum-Based Deep Reinforcement Learning (커리큘럼 기반 심층 강화학습을 이용한 좁은 틈을 통과하는 무인기 군집 내비게이션)

  • Myong-Yol Choi;Woojae Shin;Minwoo Kim;Hwi-Sung Park;Youngbin You;Min Lee;Hyondong Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.117-129
    • /
    • 2024
  • This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.

Development of Adaptive Optics System for the Geochang 100 cm Telescope

  • Hyung-Chul Lim;Francis Bennet;Sung-Yeol Yu;Ian Price;Ki-Pyoung Sung;Mansoo Choi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.185-198
    • /
    • 2024
  • Korea Astronomy and Space science Institute (KASI) partnered with the Australian National University (ANU) to develop the adaptive optics (AO) system at the Geochang observatory with a 100 cm optical telescope for multiple applications, including space geodesy, space situational awareness and Korean space missions. The AO system is designed to get high resolution images of space objects with lower magnitude than 10 by using themselves as a natural guide star, and achieve a Strehl ratio larger than 20% in the environment of good seeing with a fried parameter of 12-15 cm. It will provide the imaging of space objects up to 1,000 km as well as its information including size, shape and orientation to improve its orbit prediction precision for collision avoidance between active satellites and space debris. In this paper, we address not only the design of AO system, but also analyze the images of stellar objects. It is also demonstrated that the AO System is achievable to a near diffraction limited full width at half maximum (FWHM) by analyzing stellar images.

A Channel Allocation Protocol for Collision Avoidance between Reader in 2.4GHz Multiple Channel Active RFID System (2.4GHz 다중채널 능동형RFID시스템에서 리더간 충돌회피를 위한 채널 할당 프로토콜)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.139-142
    • /
    • 2009
  • RFID(Radio Frequency IDentification) technology is an automatic identification method using radio frequencies between RFID reader which collects the information and tag which transmits the information. RFID technology develops passive RFID which transmit the only ID to active RFID which transmit the additional information such as sensing information. However, ISO/IEC 18000-7 as active RFID standard has a problem which cannot use multiple channel. To solve this problem, we use the 2.4GHz bandwidth technology and we propose the dynamic channel allocation method which can efficiently allot a channel. we show the operation of the dynamic channel allocation method through design and implement with CC2500DK of Taxas Instrument.

  • PDF

Collision Avoidance for Indoor Mobile Robotics using Stereo Vision Sensor (스테레오 비전 센서를 이용한 실내 모바일 로봇 충돌 회피)

  • Kwon, Ki-Hyeon;Nam, Si-Byung;Lee, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2400-2405
    • /
    • 2013
  • We detect the obstacle for the UGV(unmanned ground vehicle) from the compound image which is generated by stereo vision sensor masking the depth image and color image. Stereo vision sensor can gathers the distance information by stereo camera. The obstacle information from the depth compound image can be send to mobile robot and the robot can localize the indoor area. And, we test the performance of the mobile robot in terms of distance between the obstacle and the robot's position and also test the color, depth and compound image respectively. Moreover, we test the performance in terms of number of frame per second which is processed by operating machine. From the result, compound image shows the improved performance in distance and number of frames.

Mutual Exclusion based Localization Technique in Mobile Wireless Sensor Networks (이동 무선 센서 네트워크에서 상호배제 기반 위치인식 기법)

  • Lee, Joa-Hyoung;Lim, Dong-Sun;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1493-1504
    • /
    • 2010
  • The localization service which provides the location information of mobile user, is one of important service provided by sensor network. Many methods to obtain the location information of mobile user have been proposed. However, these methods were developed for only one mobile user so that it is hard to extend for multiple mobile users. If multiple mobile users start the localization process concurrently, there could be interference of beacon or ultrasound that each mobile user transmits. In the paper, we propose LME, the localization technique for multiple mobile nodes in mobile wireless sensor networks. In LME, collision of localization between sensor nodes is prevented by forcing the mobile node to get the permission of localization from anchor nodes. For this, we use CTS packet type for localization initiation by mobile node and RTS packet type for localization grant by anchor node. NTS packet type is uevento reject localization by anchor node for interference avoidance.nghe experimental result shows that the number of interference between nodes are increased in proportion to the number of mobile nodes and LME provides efficient localization.

Performance Analysis of IEEE 802.15.4e Time Slotted Channel Hopping for Low-Rate Wireless Networks

  • Chen, Shuguang;Sun, Tingting;Yuan, Jingjing;Geng, Xiaoyan;Li, Changle;Ullah, Sana;Alnuem, Mohammed Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • The release of IEEE 802.15.4e specification significantly develops IEEE 802.15.4. The most inspiring improvement is the enhancement for medium access control (MAC) sublayer. To study the performance of IEEE 802.15.4e MAC, in this paper we first present an overview of IEEE 802.15.4e and introduce three MAC mechanisms in IEEE 802.15.4e. And the major concern here is the Time Slotted Channel Hopping (TSCH) mode that provides deterministic access and increases network capacity. Then a detailed analytical Markov chain model for TSCH carrier sense multiple access with collision avoidance (CSMA-CA) is presented. Expressions which cover most of the crucial issues in performance analysis such as the packet loss rate, energy consumption, normalized throughput, and average access delay are presented. Finally the performance evaluation for the TSCH mode is given and we make a comprehensive comparison with unslotted CSMA-CA in non-beacon enabled mode of IEEE 802.15.4. It can validate IEEE 802.15.4e network can provide low energy consumption, deterministic access and increase network capacity.

Design of a W-Band Power Amplifier Using 65 nm CMOS Technology (65 nm CMOS 공정을 이용한 W-대역 전력증폭기 설계)

  • Kim, Jun-Seong;Kwon, Oh-yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.330-333
    • /
    • 2016
  • In this paper, we propose 77 GHz power amplifier for long range automotive collision avoidance radar using 65 nm CMOS process. The proposed circuit has a 3-stage single power amplifier which includes common source structure and transformer. The measurement results show 18.7 dB maximum voltage gain at 13 GHz 3 dB bandwidth. The measured maximum output power is 10.2 dBm, input $P_{1dB}$ is -12 dBm, output $P_{1dB}$ is 5.7 dBm, and maximum power add efficiency is 7.2 %. The power amplifier consumes 140.4 mW DC power from 1.2 V supply voltage.

Frame Synchronization for Mobile WiMAX Femtocells Using IEEE802.11 Based Wireless Backhaul (IEEE 802.11 기반의 무선 백홀을 사용하는 Mobile WiMAX 펨토셀을 위한 프레임 동기화 기법)

  • Choi, Ji-Hoon;Oh, Hyuk-Jun;Yun, Jae-Yeun;Ko, Hyun-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.667-679
    • /
    • 2010
  • The use of femtocells in buildings and homes has been widely studied as a means to enlarge the cell coverage and increase the network capacity of mobile communication systems. Femtocells for Mobile WiMAX (M-WiMAX) using time division duplexing (TDD) requires frame synchronization with neighboring base stations to avoid interference between uplink and downlink signals. In this paper, we propose a new frame synchronization method for femtocell using IEEE 802.11 based wireless backhaul, which transfers the time information of mobile network to femtocells via the beacon signal provided by IEEE 802.11. Also, in order to reduce timing error of the proposed method, we modify the collision avoidance scheme in the transmitter of IEEE 802.11 and apply a timing estimation technique designed in the sense of least squares to the receiver of IEEE 802.11. Through computer simulations using the proposed scheme, we evaluate the performance of frame synchronization for femtocells and show that the recovered timing information satisfies the timing specification defined by M-WiMAX standard.

CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks

  • Ullah, Fasee;Abdullah, Abdul Hanan;Abdul-Salaam, Gaddafi;Arshad, Marina Md;Masud, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5835-5854
    • /
    • 2017
  • The implementation of IEEE 802.15.6 in Wireless Body Area Network (WBAN) is contention based. Meanwhile, IEEE 802.15.4 MAC provides limited 16 channels in the Superframe structure, making it unfit for N heterogeneous nature of patient's data. Also, the Beacon-enabled Carrier-Sense Multiple Access/Collision-Avoidance (CSMA/CA) scheduling access scheme in WBAN, allocates Contention-free Period (CAP) channels to emergency and non-emergency Biomedical Sensors (BMSs) using contention mechanism, increasing repetition in rounds. This reduces performance of the MAC protocol causing higher data collisions and delay, low data reliability, BMSs packet retransmissions and increased energy consumption. Moreover, it has no traffic differentiation method. This paper proposes a Low-delay Traffic-Aware Medium Access Control (LTA-MAC) protocol to provide sufficient channels with a higher bandwidth, and allocates them individually to non-emergency and emergency data. Also, a Contention Differentiated Adaptive Slot Allocation CSMA-CA (CDASA-CSMA/CA) for scheduling access scheme is proposed to reduce repetition in rounds, and assists in channels allocation to BMSs. Furthermore, an On-demand (OD) slot in the LTA-MAC to resolve the patient's data drops in the CSMA/CA scheme due to exceeding of threshold values in contentions is introduced. Simulation results demonstrate advantages of the proposed schemes over the IEEE 802.15.4 MAC and CSMA/CA scheme in terms of success rate, packet delivery delay, and energy consumption.

Design of a 24 GHz Power Amplifier Using 65-nm CMOS Technology (65-nm CMOS 공정을 이용한 24 GHz 전력증폭기 설계)

  • Seo, Dong-In;Kim, Jun-Seong;Cui, Chenglin;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.941-944
    • /
    • 2016
  • This paper proposes 24 GHz power amplifier for automotive collision avoidance and surveillance short range radar using Samsung 65-nm CMOS process. The proposed circuit has a 2-stage differential power amplifier which includes common source structure and transformer for single to differential conversion, impedance matching, and power combining. The measurement results show 15.5 dB maximum voltage gain and 3.6 GHz 3 dB bandwidth. The measured maximum output power is 13.1 dBm, input $P1_{dB}$ is -4.72 dBm, output $P1_{dB}$ is 9.78 dBm, and maximum power efficiency is 17.7 %. The power amplifier consumes 74 mW DC power from 1.2 V supply voltage.