• Title/Summary/Keyword: Collision Response

Search Result 187, Processing Time 0.026 seconds

REAL-TIME COLLISION RESPONSE BETWEEN CLOTH AND SPHERE OBJECT IN UNITY (유니티 게임 엔진에서의 구형 물체와 천 시뮬레이션간의 실시간 충돌 및 반응 처리 연구)

  • Kim, Min Sang;Song, Wook;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • As the performance of computer hardware has been increased in recent years, more realistic computer generated objects can be created and presented in personal computers and portable digital devices as well. For this reason, digital contents, including computer graphics, require virtual objects that are more realistic and representable in real-time on various devices, thus it requires more computational costs. In order to support the production of contents including computer graphics, games, and animations on multi-platform, Unity or unreal engines are mainly used. To represent more realistic behavior of virtual objects in a simulation, a virtual object must collide with other virtual objects and present the plausible interaction, as in the real world. However, such dynamic simulation requires a large amount of computational cost, and most portable devices cannot provide these dynamic simulations in real-time. In this paper, we proposed a GPGPU computation based dynamic cloth simulation to represent collision and response with spherical object in real-time. We believe that the proposed method can be useful for readily producing realistic digital contents.

Performance of bridge structures under heavy goods vehicle impact

  • Zhao, Wuchao;Qian, Jiang;Wang, Juan
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.515-525
    • /
    • 2018
  • This paper presents a numerical study on the performance of reinforced concrete (RC) bridge structures subjected to heavy goods vehicle (HGV) collision. The objectives of this study are to investigate the dynamic response and failure modes of different types of bridges under impact loading as well as to give an insight into the simplified methods for modeling bridge structures. For this purpose, detailed finite-element models of HGV and bridges are established and verified against the full-scale collision experiment and a recent traffic accident. An intensive parametric study with the consideration of vehicle weight, vehicle velocity, structural type, simplified methods for modeling bridges is conducted; then the failure mode, impact force, deformation and internal force distribution of the validated bridge models are discussed. It is observed that the structural type has a significant effect on the force-transferring mechanism, failure mode and dynamic response of bridge structures, thus it should be considered in the anti-impact design of bridge structures. The impact force of HGV is mainly determined by the impact weight, impact velocity and contact interface, rather than the simplification of the superstructure. Furthermore, to reduce the modeling and computing cost, it is suggested to utilize the simplified bridge model considering the inertial effect of the superstructure to evaluate the structural impact behavior within a reasonable precision range.

Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems (차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어)

  • Jo, Yeong-Ju;Ha, Seong-Hyeon;Lee, Gyeong-Su;Heo, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

In-Plane Collision Analysis of Perforated Steel Plates (면내 충돌에 의한 유공 강판의 거동 해석)

  • Kang, Dong-Baek;Lee, Ju-Won;Na, Won-Bae;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • In many cases, open-type plate breakwaters use plates with multiple holes; the holes serve as energy dissipaters and weight reducers. Because of the multi-holes configuration, stress concentration should be considered during the design process. Among several design loading conditions, the loads from a possible collision with a man-made vessel or other unexpected events many damage a multi-perforated steel plate. In that case, the structural behavior of a multi-perforated steel plate is quite significant, and is not well understood. This study presents a collision analysis for a multi-perforated steel plate. First, four different perforation topologies (three with circles and one with squares) were selected to investigate the effect of different hole shapes on the structural response. Second, the wave force at a specific site was calculated and loaded onto a steel plate as a static load. The static stresses were used for reference values. Third, two rigid body impacters (cubical & cylindrical) were applied to the steel plates to investigate the transient stress responses. In addition, two different impacting angles ($45^{\circ}\;&\;90^{\circ}$) were selected to investigate the angle effect. From the collision analysis, the significance of the transient stresses was emphasized.

An Anti Collision Algorithm using Parity Mechanism in RFID Systems (RFID 시스템에서 패리티 메카니즘을 이용한 충돌방지 알고리즘)

  • Kim, Sung-Soo;Kim, Yong-Hwan;Ahn, Kwang-Seon
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.389-396
    • /
    • 2009
  • In RFID systems, identifying the tag attached to the subject begins with the request from a reader. When the reader sends a request, multiple tags in the reader's interrogation zone simultaneously respond to it, resulting in collision. The reader needs the anti collision algorithm which can quickly identify all the tags in the interrogation zone. We propose the Anti Collision Algorithm using Parity Mechanism(ACPM). In ACPM, a collision can be prevented because the tags which match with the prefix of the reader's request respond as followings; the group of tags with an even number of 1's in the bits to the prefix + 2nd bits responds in slot '0', while the group of tags with an odd number of 1's responds in slot '1'. The ACPM generates the request prefix so that the only existing tags according to the response in the corresponding slot. If there are two collided bits in tags, then reader identify tags by the parity mechanism. That is, it decreases the tag identification time by reducing the overall number of requests.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

The Effect of Induced Multipoles on the Fifth-order Raman Response

  • Jansen, Thomas I.C.;Duppen, Koos;Snijders, Jaap G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1102-1106
    • /
    • 2003
  • In our previous work we developed the Finite Field method in order to calculate the fifth-order Raman response. The method was applied to calculate various polarization components of the two-dimensional response of liquid $CS_2$. So far, all calculations relied on the dipole-induced dipole. Accurate time-dependent density functional theory calculations have shown that this model has big discrepancies, when molecules are close together as in the liquid. We now report results of investigations on the importance of multipole and electron overlap effects on the polarizability and the fifth-order Raman response. It is shown that these collision effects, especially the induced multipoles, are crucial in the description of the fifth-order response. The impact is found to be especially pronounced for the χ_{mmzzzz}^{(5)}$response that is solely due to interaction induced effects. The calculated response will be compared with various experimental results.

RFID Reader Anti-collision Algorithm using the Channel Monitoring Mechanism (채널 모니터링 기법을 이용한 RFID 리더 충돌방지 알고리즘)

  • Lee Su-Ryun;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-46
    • /
    • 2006
  • When an RFID reader attempts to read the tags, interference might occur if the neighboring readers also attempt to communicate with the same tag at the same time or the neighboring readers use the same frequency simultaneously. These interferences cause the RFID reader collision. When the RFID reader collision occurs, either the command from the reader cannot be transmitted to the tags or the response of the tags cannot receive to the reader correctly, Therefore, the international standard for RFID and some papers proposed the methods to reduce the reader collision. Among those, Colorwave and Enhanced Colorwave is the reader anti-collision algorithm using the frame slotted ALOHA based a TDM(Time Division Multiplex) and are able to reduce the reader collision because theses change the frame size according to a collision probability. However, these can generate the reader collisions or interrupt the tag reading of other readers because the reader that collides with another reader randomly chooses a new slot in the frame. In this paper, we propose a new RFID reader anti-collision algorithm that each reader monitors the slots in the frame and chooses the slot having the minimum occupation probability when the reader collision occurs. Then we analyze the performance of the proposed algorithm using simulation tool.

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.