• Title/Summary/Keyword: Collision Dynamics

Search Result 180, Processing Time 0.036 seconds

Energy Exchanges and Adhesion Probability of Lennard-Jones Cluster Colliding with a Weakly Attractive Static Surface (클러스터-표면 충돌시 부착 확률과 에너지 교환에 대한 분자동력학 시물레이션)

  • Jung, Seung-Chai;Suh, Dong-Uk;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1788-1793
    • /
    • 2008
  • Classical molecular dynamics simulations (MDS) were conducted to simulate nano-sized cluster collisions with a weakly attractive static surface. Energy exchanges associated with the cluster collision and the adhesion probability are discussed. Routes of the energy exchanges and the kinetic energy loss are vastly altered in their mode according to the cluster incident velocity. In the elastic collision regime ($V_0$<0.1), most incident kinetic energy is recovered into the rebounding kinetic energy, but a little loss in the incident kinetic energy causes the cluster adhesion. Dissipated kinetic energy is converted into the rotational energy. In the weakly plastic collision regime (0.1<$V_0$<0.3), the transition from elastic to plastic collision occurs, and a large part of the released potential energy is converted into rebounding translational energy. For strongly plastic collisions ($V_0$>0.3), permanent cluster deformation occurs with extensive collapse of the lattice structure inducing a solid-to-solid phase transition; moreover, most of the cluster kinetic energy is converted into cluster potential and thermal energy.

  • PDF

Development of Autonomous Navigation System Using Simulation Based on Unity-ROS (Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증)

  • Kiwon Kim;Hyuntae Bang;Jeonghwa Seo;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor (철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가)

  • Ryu, Yeon-Sun;Cho, Hyun-Man;Kim, Seo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Analysis of train collisions using 2D multibody dynamics models (열차사고의 2차원 충돌동역학 모델링 기법 연구)

  • Kim, Geo-Young;Cho, Hyun-Jik;Park, Min-Young;Koo, Jeong-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.358-363
    • /
    • 2008
  • Through this study, 2D multibody dynamics models for analysis of train collisions have been developed to evaluate the crashworthiness requirements of the TSI regulation. The crashworthiness regulation requires some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 kph, and a collision against a standard deformable obstacle of 15 ton at 110 kph. The complete train set will be composed of hybrid model with 2D and 1D model. Using numerical analysis of the hybrid model, some crashworthy design were evaluated in terms of mean crush forces and energy absorptions for main crushable structures and devices. especially, 2D model can evaluate overriding effect in train collisions. It is shown from the simulation results that the suggested hybrid model can easily evaluate the crashworthiness requirements.

  • PDF

Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance (직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발)

  • Jung, Byung-jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

CRASHWORTHY DESIGN AND EVALUATION ON THE FRONT-END STRUCTURE OF KOREAN HIGH SPEED TRAIN

  • Koo, J.S.;Youn, Y.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.173-180
    • /
    • 2004
  • An intensive study was conducted for the crash worthy structural design of the recently developed Korean High Speed Train (KHST). Two main design concepts were set up to protect both crews and passengers from serious injury in heavy collision accidents, and to reduce damage to the train itself in light collision accidents. A collision against a movable 15-ton rigid obstacle at 110 kph was selected from train accident investigations as the accident scenario for the heavy collisions. A train-to-train collision at the relative velocity of 16 kph was used for the light collision. The crashworthiness behaviors of KHST were numerically evaluated using FEM. Analysis results using 1-D collision dynamics model of the full rake consist and 3-D shell element model of the front end structure showed good crashworthy responses in a viewpoint of structural design. Occupant analyses and sled tests demonstrated that KHST performed well enough to protect occupants under the considered accident scenarios. Finally our numerical approaches were evaluated by a real scale collision test.

Fluid Dynamic Efficiency of an Anatomically Correct Total Cavopulmonary Connection: Flow Visualizations and Computational Fluid Dynamic Studies

  • Yun, S.H.;Kim, S.Y.;Kim, Y.H.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.36-41
    • /
    • 2003
  • Both flow visualizations and computational fluid dynamics were performed to determine hemodynamics in a total cavopulmonary connection (TCPC) model for surgically correcting congenital heart defects. From magnetic resonance images, an anatomically correct glass model was fabricated to visualize steady flow. The total flow rates were 4, 6 and 8L/min and flow rates from SVC and IVC were 40:60. The flow split ratio between LPA and RPA was varied by 70:30, 60:40 and 50:50. A pressure-based finite-volume software was used to solve steady flow dynamics in TCPC models. Results showed that superior vena cava(SVC) and inferior vena cava(IVC) flow merged directly to the intra-atrial conduit, creating two large vortices. Significant swirl motions were observed in the intra-atrial conduit and pulmonary arteries. Flow collision or swirling flow resulted in energy loss in TCPC models. In addition, a large intra-atrial channel or a sharp bend in TCPC geometries could influence on energy losses. Energy conservation was efficient when flow rates in pulmonary branches were balanced. In order to increase energy efficiency in Fontan operations, it is necessary to remove a flow collision in the intra-atrial channel and a sharp bend in the pulmonary bifurcation.

  • PDF

Dynamics of a Pico Slider during the Ramp Loading Process (Ramp Loading 피코 슬라이더의 거동 해석)

  • Rhim Yoon-Chul;Kim Bum-Joon;Cho Kwang-Pyo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.