• Title/Summary/Keyword: Collision Angle

Search Result 236, Processing Time 0.031 seconds

Si(100) Surface Structure Studied by Time-Of-Flight Impact-Collision ton Scattering Spectroscopy (비행시간형 직충돌 이온산란 분광법을 이용한 Si(100) 면의 구조해석)

  • Hwang, Yeon;Lee, Tae-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.765-769
    • /
    • 2003
  • Time-Of-flight Impact-Collision Ion Scattering Spectroscopy (TOF-ICISS) using 2 keV He$\^$+/ ion was applied to study the geometrical structure of the Si(100) surface. The scattered ion intensity was measured along the [011] azimuth varying the incident angle. The focusing effects were appeared at the incident angles of 20$^{\circ}$, 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$. The Si atomic position was simulated by calculating the shadow cone to explain the five focusing effects. The four focusing effects at 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$ resulted from the {011} surface where no dimers existed on the outermost surface. On the contrary, the scattering between two Si atoms in a dimer resulted in the focusing peak at 20$^{\circ}$.

Tele-operation of a Mobile Robot Using Force Reflection Joystick with Single Hall Sensor (단일 홀센서 힘반영 조이스틱을 이용한 모바일 로봇 원격제어)

  • Lee, Jang-Myung;Jeon, Chan-Sung;Cho, Seung-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • Though the final goal of mobile robot navigation is to be autonomous, operators' intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas cannot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. A collision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.

  • PDF

Analysis of vehicle progress before and after a collision using simulation (시뮬레이션을 이용한 충돌 전후 차량 진행궤적 분석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.402-408
    • /
    • 2021
  • Vehicle engineering analysis in the event of an accident caused by a car built on mechanical design has not been investigated in-depth but relies on the subjective experience knowledge of the investigator. This study analyzed the correlation between the speed, progress, steering, and braking before impact, which is consistent with the final stop position, by drawing a site situation chart using the CAD (CAD) program and repeating 250 crashes using the PC-Crash program. The following situations were investigated: lower impact velocity; greater impact speed of the vehicle, which is not affected significantly by the departure angle; higher vehicle speed, such as the effective impact velocity, after the impact; higher vehicle speed; and lower vehicle speed. (Ed note: I am unsure what you are saying here. It appears contradictory and not a complete sentence. Please check the changes.)The simulation results of this study identified the process of returning to the magnetic progression lane after recognizing the opposite porter while Mighty was carried out on the uphill left-curve section in a position that crossed the center line, and the collision of the porter's front left side, pushing the porter in the right diagonal direction and making the front stop towards approximately 11 o'clock.

Collision Strength Assessment for Double Hull Type Product Carrier Using Finite Element Analysis (이중 선체 화학 운반선의 충돌 강도 평가)

  • Paik, Jeom-Kee;Lee, Jae-Myung;Lee, Kyung-Ern;Won, Suk-Hee;Kim, Chelo-Hong;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.481-489
    • /
    • 2004
  • Ship collisions and grounding continue to occur regardless of continuous efforts to prevent such accidents. With the increasing demand for safety at sea and for protection of the environment, it is of crucial importance to be able to reduce the probability of accidents, assess their consequences and ultimately minimize or prevent potential damages to the ships and the marine environment. Numerical simulations for actual collision problem are conducted with a special attention with respect to finite element size, fracture criteria and material properties, which require a careful consideration to improve the accuracy. A parametric analysis varying colliding speed, angle, design loading condition is conducted using nonlinear finite element analysis method for 46,00 dwt Product/chemical carrier. The relationship between the absorbed energy and indentation are derived quantitatively using the insights observed from this study, and a novel design concept for assessing the anti-collision performance are proposed.

Aerosol Incident Angle Dependence of Optical and Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법으로 성막한 Bi:YIG 막의 광학적/자기적특성에 미치는 에어로졸 입사각도의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) films were deposited with the aerosol deposition method and their magnetic and optical properties were investigated as a function of the aerosol incident angle. The optical transmittance of Bi:YIG increased about 80% with increasing the aerosol incident angle from 0 degree to 30 degree, due to decrease of the defects which were formed from agglutinations of the Bi:YIG particles inside and/or surface of the film. The coercive force also decreased largely with increasing the aerosol incident angle due to the reduction of the collision energy between the particles and the substrate and the decrease of the defects.

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

Collision Avoidance Algorithm and System Development for Unmanned Driving Safety of All Terrain Vehicle (무인 운항 시스템의 주행안전을 위한 충돌회피 시스템과 알고리즘 개발)

  • Yun, Duk-Sun;Lim, Ha-Young;Yu, Hwan-Sin;Kim, Jung-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.104-110
    • /
    • 2005
  • In this paper, unmanned vehicle system and VFF algorithm development with vehicle dynamics is the main topic as a part of Intelligent Transportation System. Unmanned vehicle system is classified by vehicle system and control system. Authors used RC servo motor for longitudinal control via throttle angle, shift lever control, and brake control. For lateral control, authors used step motor, equipped with reduction gear. Unmanned vehicle has nine ultrasonic sensors in front of the unmanned vehicle. After the microcontroller computes the distance between unmanned vehicle and obstacle, the control computer calculates the steering angle enough to avoid the obstacle.

Obstacle Avoidance of a Mobile Robot Using Low-Cost Ultrasonic Sensors with Wide Beam Angle (지향각이 넓은 저가의 초음파센서를 이용한 이동로봇의 장애물 회피)

  • Choi, Yun-Kyu;Choi, Woo-Soo;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1102-1107
    • /
    • 2009
  • An ultrasonic sensor has been widely used as a range sensor for its low cost and capability of detecting some obstacles, such as glasses and black surfaces, which are not well detected by a laser scanner and an IR sensor. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to obstacle avoidance using low-cost anisotropic ultrasonic sensors with wide beam angle. In this paper, obstacles can be detected by the proposed sensor configuration which consists of one transmitter and three receivers. Because even wide obstacles are represented by a point, which corresponds to the intersection of range data from each receiver of the anisotropic sensor, a robot cannot avoid wide obstacles successfully. This paper exploits the probabilistic mapping technique to avoid collision with various types of obstacles. The experimental results show that the proposed method can robustly avoid obstacles in most indoor environments.

Navigation Strategy Of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure (계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로봇의 주행법)

  • 최정원;한교경;박만식;이석규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.367-372
    • /
    • 2001
  • This paper proposes a hierachically structured navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. Some simulation results show the effectiveness of the proposed algorithm.

  • PDF

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.