• 제목/요약/키워드: College Campus Design

검색결과 128건 처리시간 0.029초

Service Quality in the Distribution of Consumer Attitudes, Word of Mouth, and Private University Selection Decisions

  • PURWANTORO;Nurul Zarirah NIZAM
    • 유통과학연구
    • /
    • 제21권10호
    • /
    • pp.51-61
    • /
    • 2023
  • Purpose: Research focuses on private universities' professional education in a competitive educational environment. Due to increased competition in the higher education industry, private universities are under pressure to improve their marketing strategies and better understand their prospective students. This study intends to investigate how information sources are used and modified by Indonesian university students when making decisions. Research design, data and methodology: This research is a case study in Riau province, which includes active university students registered in the government database. Data was collected using a questionnaire distributed via Google Forms to students at a private university, and 164 students completed the questionnaire. Results: The results show that the influence of technical quality, functional quality, and image cannot affect word of mouth, and technical quality cannot affect consumer attitudes. The results show that the distribution of high service quality and high image will encourage people to share their experiences by word of mouth to build evaluation attachment in college selection. and found that a good campus image has no direct impact on word of mouth. The spread of an excellent campus image only attracts students to evaluate it. The more talk about the distribution of service quality, the higher the decision to choose the service.

Computational study of a small scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models

  • Aresti, Lazaros;Tutar, Mustafa;Chen, Yong;Calay, Rajnish K.
    • Wind and Structures
    • /
    • 제17권6호
    • /
    • pp.647-670
    • /
    • 2013
  • The paper presents a numerical approach to study of fluid flow characteristics and to predict performance of wind turbines. The numerical model is based on Finite-volume method (FVM) discretization of unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The movement of turbine blades is modeled using moving mesh technique. The turbulence is modeled using commonly used turbulence models: Renormalization Group (RNG) k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ and k-${\omega}$ turbulence models. The model is validated with the experimental data over a large range of tip-speed to wind ratio (TSR) and blade pitch angles. In order to demonstrate the use of numerical method as a tool for designing wind turbines, two dimensional (2-D) and three-dimensional (3-D) simulations are carried out to study the flow through a small scale Darrieus type H-rotor Vertical Axis Wind Turbine (VAWT). The flows predictions are used to determine the performance of the turbine. The turbine consists of 3-symmetrical NACA0022 blades. A number of simulations are performed for a range of approaching angles and wind speeds. This numerical study highlights the concerns with the self-starting capabilities of the present VAWT turbine. However results also indicate that self-starting capabilities of the turbine can be increased when the mounted angle of attack of the blades is increased. The 2-D simulations using the presented model can successfully be used at preliminary stage of turbine design to compare performance of the turbine for different design and operating parameters, whereas 3-D studies are preferred for the final design.

Metal Insulator Gate Geometric HEMT: Novel Attributes and Design Consideration for High Speed Analog Applications

  • Gupta, Ritesh;Kaur, Ravneet;Aggarwal, Sandeep Kr;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권1호
    • /
    • pp.66-77
    • /
    • 2010
  • Improvement in breakdown voltage ($BV_{ds}$) and speed of the device are the key issues among the researchers for enhancing the performance of HEMT. Increased speed of the device aspires for shortened gate length ($L_g$), but due to lithographic limitation, shortening $L_g$ below sub-micrometer requires the inclusion of various metal-insulator geometries like T-gate onto the conventional architecture. It has been observed that the speed of the device can be enhanced by minimizing the effect of upper gate electrode on device characteristics, whereas increase in the $BV_{ds}$ of the device can be achieved by considering the finite effect of the upper gate electrode. Further, improvement in $BV_{ds}$ can be obtained by applying field plates, especially at the drain side. The important parameters affecting $BV_{ds}$ and cut-off frequency ($f_T$) of the device are the length, thickness, position and shape of metal-insulator geometry. In this context, intensive simulation work with analytical analysis has been carried out to study the effect of variation in length, thickness and position of the insulator under the gate for various metal-insulator gate geometries like T-gate, $\Gamma$-gate, Step-gate etc., to anticipate superior device performance in conventional HEMT structure.

VLSI Implementation of Forward Error Control Technique for ATM Networks

  • Padmavathi, G.;Amutha, R.;Srivatsa, S.K.
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.691-696
    • /
    • 2005
  • In asynchronous transfer mode (ATM) networks, fixed length cells of 53 bytes are transmitted. A cell may be discarded during transmission due to buffer overflow or a detection of errors. Cell discarding seriously degrades transmission quality. The quality degradation can be reduced by employing efficient forward error control (FEC) to recover discarded cells. In this paper, we present the design and implementation of decoding equipment for FEC in ATM networks based on a single parity check (SPC) product code using very-large-scale integration (VLSI) technology. FEC allows the destination to reconstruct missing data cells by using redundant parity cells that the source adds to each block of data cells. The functionality of the design has been tested using the Model Sim 5.7cXE Simulation Package. The design has been implemented for a $5{\times}5$ matrix of data cells in a Virtex-E XCV 3200E FG1156 device. The simulation and synthesis results show that the decoding function can be completed in 81 clock cycles with an optimum clock of 56.8 MHz. A test bench was written to study the performance of the decoder, and the results are presented.

  • PDF

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Ashish Bhatt;Darshankumar Prajapati;Akshaya Gupte
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.69-82
    • /
    • 2023
  • Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

국내산 활엽수 열처리재의 재색 변화에 따른 목재의 특성과 생활용품 활용방안에 관한 연구 (A Study on the Plans for Living Products and Wood Properties & Color Changes on Heat treated Wood of Domestic Hardwood)

  • 신랑호;한태형;권진헌
    • 한국가구학회지
    • /
    • 제21권1호
    • /
    • pp.62-71
    • /
    • 2010
  • This study was carried out to investigate the physical and mechanical properties of 6 hardwoods before and after heat treatment in an effort to produce the high quality industrial lumber product. The object of the research was to design living products with heat treated woods. The results were as follows. Specific gravities of green woods were in range from 0.87 to 1.12. The specific gravities of never treated woods showed higher than those of the heat treated woods. The shrinkage of heat treated woods when green to air & oven dry was significantly low, compared to never treated woods. The compression strengths parallel to grain of heat treated woods showed higher than those of never treated woods. The moduli of rupture (MOR) of never treated and heat treated woods were $170.37N/mm^2~107.07N/mm^2$ and $122.78N/mm^2~61.27N/mm^2$ respectively. MORs of heat treated woods showed lower than those of never treated woods. The modulus of elasticity (MOE) of heat treated woods showed higher than those of never treated woods.

  • PDF

Comparative numerical analysis for cost and embodied carbon optimisation of steel building structures

  • Eleftheriadis, Stathis;Dunant, Cyrille F.;Drewniok, Michal P.;Rogers-Tizard, William;Kyprianou, Constantinos
    • Advances in Computational Design
    • /
    • 제3권4호
    • /
    • pp.385-404
    • /
    • 2018
  • The study investigated an area of sustainable structural design that is often overlooked in practical engineering applications. Specifically, a novel method to simultaneously optimise the cost and embodied carbon performance of steel building structures was explored in this paper. To achieve this, a parametric design model was developed to analyse code compliant structural configurations based on project specific constraints and rigorous testing of various steel beam sections, floor construction typologies (precast or composite) and column layouts that could not be performed manually by engineering practitioners. Detailed objective functions were embedded in the model to compute the cost and life cycle carbon emissions of the different material types used in the structure. Results from a comparative numerical analysis of a real case study illustrated that the proposed optimisation approach could guide structural engineers towards areas of the solution space with realistic design configurations, enabling them to effectively evaluate trade-offs between cost and carbon performance. This significant contribution implied that the optimisation model could reduce the time required for the design and analysis of multiple structural configurations especially during the early stages of a project. Overall, the paper suggested that the deployment of automated design procedures can enhance the quality as well as the efficiency of the optimisation analysis.

Prediction of Binding Free Energy Calculation Using Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) Method in Drug Discovery: A Short Review

  • Kothandan, Gugan;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.216-219
    • /
    • 2012
  • Structure-based drug design possibly benefit from in silico methods that precisely predict the binding affinity of small molecules to target macromolecules. There are many limitations arise from the difficulty of predicting the binding affinity of a small molecule to a biological target with the current scoring functions. There is thus a strong interest in novel methodologies based on MD simulations that claim predictions of greater accuracy than current scoring functions, helpful for a regular use designed for drug discovery in the pharmaceutical industry. Herein, we report a short review on free energy calculations using MMPBSA method a useful method in structure based drug discovery.

족구장 조명설비에 대한 해석 및 모델링 (Lighting Analysis and Modeling on Jokcu Court)

  • 김덕구;오성보
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.173-177
    • /
    • 2007
  • This paper describes the simulations on the actual measurement analysis and lighting design for recreational sports facility. Based on illumination requirements, sports may be divided into multidirectional sports and unidirectional sports. Typical multidirectional aerial sports include Jokcu. These sports require well distributed horizontal illumination and uniformity according to aiming. Therefore, this paper estimates horizontal illuminance and uniformity ratio by actual measurement of sports lighting at recreational Jokcu court in Cheju National University and evaluation of sports lighting conditions for optimal design by computer simulation.

  • PDF

Homology Modeling of GPR18 Receptor, an Orphan G-protein-coupled Receptor

  • Kothandan, Gugan;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.16-20
    • /
    • 2013
  • G-protein-coupled receptor (GPCR) superfamily is the largest known receptor family, characterized by seven transmembrane domains and considered to be an important drug target. In this study we focused on an orphan GPCR termed as GPR18. As there is no X-ray crystal structure has been reported for this receptor, we report on a homology model of GPR18. Template structure with high homology was used for modeling and ten models were developed. A model was selected and refined by energy minimization. The selected model was further validated using various parameters. Our results could be a starting point for further structure based drug design.