• 제목/요약/키워드: Collapse test

검색결과 479건 처리시간 0.025초

차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성 (Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes)

  • 차천석;정진오;이길성;백경윤;양인영
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

고온 .senter dot. 고습환경이 CFRP 적층 원통부재의 압궤특성에 미치는 영향 (Effects of high temperatures and hygrothermals on the collapse characteristics of CFRP thin-walled laminates)

  • 곽훈이;김정호;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.650-654
    • /
    • 1995
  • In this study, in order to measure energy-absorbing charactistics in collapse test of CFRP thin-walled laminates and interpretate the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angel is observed and collapse characteristics is compared with the influence of high temperatures and hygrothermals. Especially, we supposed to clearly understand reationship between collapse characteristics in proportion to the variety of orientation angel and moisture absorbing. The value of the maximum loading, mean loading,rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurement lower than in static collapse test regarding compared with collapse characteristics conformity with the variety of the CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same and the biggest amount of energy is shown in the CFRP circular laminates with orientation angel of 15 .deg.. Therefore, in the case of use to CFRP circular laminates with axisymmetric mode, CFRP thin-walled structal members with orientation angel of 10 .deg. , 15 . deg. are generally useful.

  • PDF

경량화용 박육부재의 형상비가 압궤특성에 미치는 영향 (Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight)

  • 정종안;김정호;양인영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구 (A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes)

  • 이길성;백경윤;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰 (Experimental Study on The Bending Collapse Characteristics of Al Rectangular Tubes)

  • 강신유;김창수;정태은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.265-272
    • /
    • 1997
  • In this paper the bending collapse characteristics of 60 series Al rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment, there occured three kinds of bending collapse modes - local buckling, delayed buckling, tensile failure - depending on the b/t(width/thickness) ratio and material properties. Experiment results are compared with the results of finite element method.

  • PDF

알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성 (The characteristics of bending collapse of aluminum/GFRP hybrid tube)

  • 송민철;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

순수굽힘 시험기개발 및 사각관부재의 굽힘붕괴특성 연구 (Development of a Pure Bending Test Machine and Bending Collapse Characteristics of Rectangular Tubes)

  • 강신유;장인배;김헌영
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.222-233
    • /
    • 1998
  • A 4-point pure bending res machine is developed the evaluate the pure vending moment-rotation properties of the thin-walled tubes without imposing shear and tensile forces. The moment-rotation properties of the thin-walled tubes are measured up to and beyond collapse with the pure bending test machine. The test results are compared with those of finite element analyses and existing analytical solution.

  • PDF

점용접된 차체구조용 모자형 단면부재의 축방향 압궤특성 (Collapse Characteristics of vehicle Members with Spot Welded Hat-Shaped Section under Axial Compression)

  • 차천석;양인영;전형주;김용우;김정호
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.20-27
    • /
    • 2000
  • The hat shaped section members, spot welded strength resisting structures are the most energy absorbing ones of automobile components during the front-end collision. Under the static axial collapse load in velocity of 10mm/min and quasi-static collapse load in velocity of 1000mm/min, the collapse characteristics of the hat shaped section and double hat shaped section member have been analyzed by axial collapse tests with respect to the variations of spot weld pitches on the flanges. In addition, the quasi-static collapse simulations have been implemented in the same condition to the experiment's using FEM package, LS-DYNA3D. The simulated results have been verified in comparison with these from the quasi-static axial collapse tests. With the computational approaches the optimal energy absorbing structures can be suggested. Simulations are so helpful that the optimized data be supplied in designing vehicles in advance.

  • PDF

고온 고습하에서 CFRP 적층 원통부재의 충격 압궤특성 (A study on impact collapse characteristics of CFRP thin-walled laminates under high temperatures and hygrothermals)

  • 김정호;곽훈이;양인영
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.30-38
    • /
    • 1998
  • In this study, in order to measure energy-absorbing characteristics in impact test of CFRP thin-walled laminates and interpret the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angle is observed and impact collapse characteristics of no moisture absorbing status is compared with that under the environments of high temperatures and hygrothermals. Especially, we try to obtain quantitative design data to develop CFRP thin-walled laminates with energy characteristics of optimum impact absorbing. The value of the maximum loading, mean loading, rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured much lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurements lower than in static collapse test CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same each other and the biggest amount of energy is shown in CFRP circular laminates with orientation angle of $15^{\circ}$. Therefore, in the case of using CFRP circular laminates with axisymmetric mode, CFRP thin-walled structural members with orientation angle of $10^{\circ}$, $15^{\circ}$ has generally best condition.

  • PDF

An Experimental Study on the Axial Collapse Characteristics of Hat and Double Hat Shaped Section Members at Various Velocities

  • Cha, Cheon-Seok;Chung, Jin-Oh;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.924-932
    • /
    • 2004
  • In this study, the axial collapse tests were performed under either static (or quasi-static) or impact loads with several collapse velocities based on the expectation that para-closed sections of the front-end side members (spot welded hat and double hat shaped section members) would show quite different collapse characteristics from those for seamless section. The test results showed that both of the hat and double hat shaped section members failed in the stable sequential collapse mode in the static or quasi-static collapse tests, while the double hat shaped section members underwent the unstable collapse mode especially when the impact velocity is high. The mean collapse loads in the hat shaped section members increase with collapse velocity for all the cases of the static, quasi-static, and impact collapse tests. In the double hat shaped section members, however, the mean collapse loads decrease with increase in collapse velocity in the impact tests.