• 제목/요약/키워드: Collapse spectrum

검색결과 56건 처리시간 0.031초

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

붕괴스펙트럼을 활용한 용접철골모멘트골조의 비선형 동적 연쇄붕괴 근사해석 (Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum)

  • 이철호;김선웅;이경구;한규홍
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.267-275
    • /
    • 2009
  • 본 논문에서는 기둥이 손실된 철골모멘트골조의 2경간 보의 동적거동 특성을 고찰하고 철골모멘트골조의 연쇄붕괴 예비평가를 위한 비선형 동적 근사해석법을 제안하였다. 기둥이 손실된 2경간 부분골조 모델의 동적거동의 분석을 통하여, 2경간 보의 중력하중과 보스팬-대-보춤 비가 최대 동적 변형요구의 지배적인 요소임을 확인하였다. 이를 토대로 2경간 보의 중력하중 변수와 최대 현회전각과의 관계를 기술하는 붕괴스펙트럼 개념을 새로이 제안하고 이의 활용법을 예시하였다. 3차원 비선형 동적 유한요소해석결과와 비교하여, 본 연구에서 제안한 방안이 용접 철골모멘트골조의 비선형 연쇄붕괴거동을 신속히 평가하는데 정확하면서도 매우 효율적임을 입증하였다.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가 (Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames)

  • 김태오;한상환
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.

평면(平面) Frame의 최적소성설계(最適塑性設計) (Optimal Plastic Design of Planar Frames)

  • 임상전;황선희
    • 대한조선학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

MHD turbulence in expanding/collapsing media

  • 박준성;류동수;조정연
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • We investigate the driven magnetohydrodynamic (MHD) turbulence by including the effect of the expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of the strength and characteristic length scales of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with the expansion and collapse of background medium, the time evolution of the magnetic and kinetic energy densities depends on the nature of forcing as well as the rate of expansion and collapse. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic length scales, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our results.

  • PDF

중진지역 교량 내진설계와 응답수정계수 (Seismic Design of Bridges in Moderate Seismic Region and Response Modification Factors)

  • 국승규;이동욱
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.65-72
    • /
    • 2009
  • 도로교설계기준은 일반교량에 대한 내진설계방법으로 응답수정계수를 사용하는 스펙트럼해석법을 제시하고 있다. 그러나 중진지역이라는 한반도의 상황과 국내의 교량설계 및 시공환경에 대한 적용성은 아직 검증되지 않은 실정이다. 그러므로 도로교설계기준의 스펙트럼해석법을 적용하여 내진설계의 기본개념으로 제시되는 붕괴방지수준이 만족되는가에 대한 검토가 요구된다. 이 연구에서는 T형 및 ${\prod}$형 교각을 하부구조로 하는 두 개의 일반교량을 해석대상교량으로 선정하고, 중진지역의 설계조건과 스펙트럼해석법을 적용하여 내진설계를 수행하였다. 이 과정에서 응답수정계수의 역할과 붕괴방지수준의 만족여부를 검토하고, 그 결과를 토대로 설계기준에 보완해야 하는 사항을 제시하였다.

층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발 (Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift)

  • 김선필;김두기;곽효경;고성혁;서형열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

MHD turbulence in expanding/collapsing media

  • Park, Jun-Seong;Ryu, Dong-Su;Cho, Jung-Yeon
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We investigate driven magnetohydrodynamic (MHD) turbulence by including the effects of expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of strength and characteristic lengths of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with expansion and collapse of background medium, the magnetic energy density per comoving volume does not saturate; either it keeps decreasing or increasing with time. The magnetic energy density relative to the kinetic energy density strongly depends on the expanding or collapsing rate. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic lengths, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our findings.

  • PDF

Damage states of yielding and collapse for elevated water tanks supported on RC frame staging

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, mprakash R.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.587-601
    • /
    • 2018
  • Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.