• Title/Summary/Keyword: Collapse pressure

Search Result 280, Processing Time 0.024 seconds

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Effect of Bend Angle on the Behavior of pipe Bend under Internal Pressure and In-Plane Bending toads (내압과 내면 굽힘하중 조건에서 곡관의 거동에 미치는 굽힘각의 영향)

  • Kim Jin-Weon;Na Man-Gyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.18-25
    • /
    • 2005
  • This study performed finite element analysis on the pipe bend with various bend angles under loading conditions of internal pressure and combined pressure and bending, to investigate the effect of bend angle on the collapse behavior of pipe bend and on the stress state in the bend region. In the analysis, the pipe bends with bend angle of $5\~90^{\circ}$ were considered, and the bending moment was applied as in-plane closing and opening modes. From the results of analysis, it was found that the collapse moment of pipe bend increases with decreasing bend angle. As the bend angle decreases, also, the equivalent stress at intrados region increases regardless of bending mode. Under closing mode bending especially, the increase in stress at intrados is significant so that the maximum stress region moves from crown to intrados with decreasing bend angle.

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

A Benchmark Study of Design Codes on Offshore Pipeline Collapse for Ultra-Deepwater

  • Choi Han-Suk
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The objective of this paper is to summarize current ultra-deepwater (i.e., up to 3,500 meters water depth) pipeline mechanical design methodologies as part of the limit state design. The standard mechanical design for ultra-deepwater pipelines in the Gulf of Mexico (GOM) is based on API RP 1111. API code also has been used for deepwater projects in west Africa. DNV code OS-F101 was mostly used for deepwater projects in offshore Brazil and Europe. Some pipeline designs in the GOM have started to incorporate parts of the DNV design methodology. A discussion of failure under collapse only and combined loading (i.e. pressure + bending) is presented. The best design criteria are obtained from physical full-scale collapse testing. The comparison of the physical test data and collapse calculations using the DNV and API codes will be presented. It was found that the conservatism still exists in the collapse prediction for ultra-deepwater pipeline using modem design codes such as DNV OS-F101 and API RP 1111.

Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula (최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.316-326
    • /
    • 2019
  • In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

Implosion Analysis of Circular Cylinder using Simplified Model (간이물리모델을 이용한 원통형 압력용기의 내파해석)

  • Nho, In Sik;Cho, Sang Rai;Kim, Yong Yook;Han, Soonhung;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.