DOI QR코드

DOI QR Code

Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula

최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계

  • Cho, Yoon Sik (Agency for Defense Development) ;
  • Paik, Jeom Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • Received : 2018.10.01
  • Accepted : 2019.01.31
  • Published : 2019.08.20

Abstract

In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

Keywords

References

  1. Aguirre, F., Vargas, S., Valdes, D., & Tornero, J., 2017. State of the art of parameters for mechanical design of an autonomous underwater vehicle. International Journal of Oceans and Oceanography, 11(1), pp.89-103.
  2. ASME Boiler and Pressure Vessel Code, 2007. Section X: Fiber-Reinforced Plastic Pressure Vessel.
  3. Burcher, R. and Rydill, L., 1994. Concepts in Submarine Design. Cambridge University Press: Cambridge, U.K.
  4. Cho, J.R., Chung, W.B., & Kim, J.S., 2009. UVRC, Division of underwater structure and vibration research, 2nd Phase Report, ADDR-413-091956, Daejeon: Agency for Defense Development, Republic of Korea.
  5. Cho, Y.S., 2005, Structural strength calculation method and program manual for pressure hull, NSDC-513-051385, Daejeon: Agency for Defense Development, Republic of Korea.
  6. Cho, Y.S., Oh, D.H., & Paik, J.K., 2019, An empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external pressure loads. Ocean Engineering 172, pp.191-198. https://doi.org/10.1016/j.oceaneng.2018.11.028
  7. Cho, Y.S. & Paik, J.K., 2017. Optimal design of submarine pressure hull structures using genetic algorithm. Journal of the Society of Naval Architects of Korea, 54(5), pp.378-386. https://doi.org/10.3744/SNAK.2017.54.5.378
  8. Dey, A., Choudhury, P.L., & Pandey, K.M., 2014. A computational study of buckling analysis of filament wound composite pressure vessel subjected to hydrostatic pressure. Global Journal of Researches In Engineering A: Mechanical and Mechanics Engineering, 14(2), pp.9-14.
  9. Goldberg, D.E., 1989. Genetic algorithms in search, optimization, and machine learning. Addison- wesley Longman Publishing Co., Inc.: Boston, USA.
  10. Hur, S.H., Son, H.J., Kweon, J.H., & Choi, J.H., 2008. Postbuckling of composite cylinders under external hydrostatic pressure. Composite Structures, 86, pp.114-124. https://doi.org/10.1016/j.compstruct.2008.03.028
  11. Jones, R.M., 1999. Mechanics of composite materials. Taylor & Francis, Inc.: Philadelphia, USA.
  12. Jung, H.Y., Cho, J.R., Han, J.Y., Lee, W.H., Bae, W.B. & Cho, Y.S., 2012. A study on buckling of filament-wound cylindrical shells under hydrostatic external pressure using finite element analysis and buckling formula. International Journal of Precision Engineering and Manufacturing, 13(5), pp.731-737. https://doi.org/10.1007/s12541-012-0095-2
  13. Kim, M.H., Cho, J.R., Bae, W.B., Kweon, J.H., Choi, J.H., Cho, S.R., & Cho, Y.S., 2010. Buckling analysis of filament-wound thick composite cylinder under hydrostatic pressure. International Journal of Precision Engineering and Manufacturing, 11(6), pp.909-913. https://doi.org/10.1007/s12541-010-0110-4
  14. Krishnakumar, K., 1989. Micro-genetic algorithms for stationary and non-stationary function optimization. Proceedings of SPIE 1196, Intelligent Control and Adaptive Systems, pp.282-296.
  15. Messager, T., 2001. Buckling of imperfect laminated cylinders under hydrostatic pressure. Composite Structures, 53, pp.301-307. https://doi.org/10.1016/S0263-8223(01)00014-9
  16. Messager, T., Pyrz, M., Gineste, B., & Chauchot, P., 2002. Optimal laminations of thin underwater composite cylindrical vessels. Composite Structures, 58, pp.529-537. https://doi.org/10.1016/S0263-8223(02)00162-9
  17. Moon, C.J., Kim, I.N., Choi, B.H., Kweon, J.H., & Choi, J.H., 2010. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications. Composite Structures, 92, pp.2241-2251. https://doi.org/10.1016/j.compstruct.2009.08.005
  18. Mouritz, A.P., Gellert, E., Burchill, P., & Challis, K., 2001. Review of advanced composite structures for naval ships and submarines. Composite Structures, 53, pp.21-41. https://doi.org/10.1016/S0263-8223(00)00175-6
  19. NASA Space Vehicle Design Criteria, 1968. Buckling of thin-walled circular cylinders. NASA SP-8007, pp.19-21, Washington, D.C.: National Aeronautics and Space Administration, USA.
  20. Perry, T.G., Douglas, C.D., & Gorman, J.J., 1992. Analytical design procedures for buckling-dominated graphite/epoxy pressure hulls. SNAME Transactions, 100, pp.93-115.
  21. ROK Navy, 2016. Criteria for structural strength of pressure hull. Design and Building Criteria for Submarine, JoHam(Jam)-1-001(0), Daejeon Korea: ROK Navy.