• Title/Summary/Keyword: Collapse length

Search Result 145, Processing Time 0.031 seconds

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

MHD turbulence in expanding/collapsing media

  • Park, Jun-Seong;Ryu, Dong-Su;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • We investigate the driven magnetohydrodynamic (MHD) turbulence by including the effect of the expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of the strength and characteristic length scales of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with the expansion and collapse of background medium, the time evolution of the magnetic and kinetic energy densities depends on the nature of forcing as well as the rate of expansion and collapse. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic length scales, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our results.

  • PDF

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

Numerical Analysis of Anchored In-situ wall using Back-Analysis Technique (역해석기법을 이용한 앵커지지 흙막이벽체의 수치해석)

  • Woo, Je-il;Chung, Dae-seouk
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Purpose: In this study, the safety management method supplementing the field displacement prediction management technique was performed using the numerical analysis. Method: The analysis was performed using MIDAS GTS / NX program based on the finite element method (FEM). Approximating the displacement data and displacement trend as close as possible to the collapse site, the collapse prevention method was applied after estimating the cause of collapse. Result: The cause of the collapse was estimated by soil parametar, one of the results obtained by performing the Back-analysis. As a result, it was confirmed that the free length of the anchor was insufficient, and the free length of the anchor was changed by the collapse prevention method, and the displacement was significantly reduced. Conclusion: If Back-analysis technique is used in field management, estimating the cause of collapse and suggesting a reasonable collapse prevention measure will help to reduce collase.

Progressive Collapse Resisting Capacity of Building Structures with Infill Steel Panels (강판벽이 설치된 건물의 연쇄붕괴 저항성능)

  • Lee, Ha-Na;Kwon, Kwang-Ho;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • In this study the progressive collapse behavior of a moment frame with infill steel panels is evaluated using nonlinear static pushdown analysis. The analysis model is a two story two span structure designed only for gravity load, and the load-displacement relationship is obtained with the center column removed. To obtain local stress and strain as well as the global structural behavior, finite element analysis is conducted using ABACUS. Through the analysis the effect of the span length and the thickness of the steel plate on the progressive collapse behavior of the structure is investigated, and the effect of the dividing the infill panel using stud columns is also studied. According to the analysis results, the thickness of the panels required to prevent progressive collapse increases as the span length increases, and as the number of panel division increases the progressive collapse resisting capacity increases slightly but the effect is not significant. It is also observed that when the infill panel is installed in only a part of the span the progressive collapse resisting capacity is somewhat increased.

Reliability analysis of double-layer domes with stochastic geometric imperfections

  • Gordini, Mehrdad;Habibi, Mohammad Reza;Sheidaii, Mohammad Reza;Tahamouliroudsari, Mehrzad
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.133-146
    • /
    • 2017
  • This study aimed to investigate the effect of initial member length an imperfection in the load carrying capacity of double-layer domes space structures. First, for the member length imperfection of each member, a random number is generated from a normal distribution. Thereupon, the amount of the imperfection randomly varies from one member to another. Afterwards, based on the Push Down analysis, the collapse behavior and the ultimate capacity of the considered structure is determined using nonlinear analysis performed by the OpenSees software and this procedure is repeated numerous times by Monte Carlo simulation method. Finally, the reliability of structures is determined. The results show that the collapse behavior of double-layer domes space structures is highly sensitive to the random distribution of initial imperfections.

Evaluation of Progressive Collapse Resisting Capacity of RC structure using the Applied Element Method (응용요소법을 이용한 철근콘크리트 구조물의 연쇄붕괴 저항성능 평가)

  • Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Progressive collapse is generally defined as a local failure of structural members occurring due to abnormal load which results in the partial collapse or total collapse of a structure. Unlike progressive collapse, explosive demolition is a method of inducing the total collapse of structure by removing all or portion of structural members. In explosive demolition the partial collapse of the structural members can be controlled at appropriate time intervals by blasting, to induce the progressive collapse of the structure and control the collapse behavior. In this study, a nonlinear dynamic analysis was carried out in order to apply the progressive collapse process to explosive demolition design of the RC structure. The occurrence of progressive collapse of analytical models was examined according to the number of floors, the removed column height and span length. For models that resisted progressive collapse, progressive collapse resisting capacity was evaluated.

Influence of Spot Weld Pitches on Collapse Characteristics of SCPI Vehicle Members (차체구조용 SCPI 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.78-78
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

Influence of Spot Weld Pitches on Collapse Characteristics for SCP1 Vehicle Members (차체구조용 SCP1 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.802-808
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

Effect of Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 감육결함의 영향)

  • Kim, Jin-Won;Kim, Tea-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.622-628
    • /
    • 2003
  • The purpose of this study is to evaluate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear 3D finite element analyses were performed to obtained collapse moment of elbow containing various wall thinning defects under two loading; modes (closing and opening modes) and defect locations (intrados and extrados). From the results of analyses, the influence of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependance of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

  • PDF