• Title/Summary/Keyword: Collapse Probability

Search Result 143, Processing Time 0.026 seconds

Dynamic Response based System Reliability Analysis of Structure with Passive Damper - Part 2: Assessment of System Failure Probability (수동형 댐퍼를 장착한 구조물의 동적응답기반 신뢰성 해석 - 제2편: 시스템 파괴확률 산정)

  • Kim, Seung-Min;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.95-101
    • /
    • 2016
  • This study proposes a multi-scale dynamic system reliability analysis of control system as a method of quantitative evaluation of its performance in probabilistic terms. In this second paper, we discuss the control effect of the viscous damper on the seismic performance of the structure-level failure. Since the failure of one structural member does not necessarily cause the collapse of the structural system, we need to consider a set of failure scenarios of the structural system and compute the sum of the failure probabilities of the failure scenarios where the statistical dependence between the failure scenarios should be taken into account. Therefore, this computation requires additional system reliability analysis. As a result, the proposed approach takes a hierarchial framework where the failure probability of a structural member is computed using a lower-scale system reliability with the union set of time-sequential member failures and their statistical dependence, and the failure probability of the structural system is again computed using a higher-scale system reliability with the member failure probabilities obtained by the lower-scale system reliability and their statistical dependence. Numerical results demonstrate that the proposed approach can provide an accurate and stable reliability assessment of the control performance of the viscous damper system on the system failure. Also, the parametric study of damper capacity on the seismic performance has been performed to demonstrate the applicability of the proposed approach through the probabilistic assessment of the seismic performance improvement of the damper system.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Reliability analysis of braced frames subjected to near field ground motions

  • Sistani, Asma;Asgarian, Behrouz;Jalaeefar, Ali
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.733-751
    • /
    • 2013
  • Near field ground motions have caused several structural damages in recent decades. As a result, seismic codes are being updated with related requirements. In this paper a comparative study on the seismic behavior of concentrically braced frames (CBFs) designed based on different seismic codes is performed. Reliability of various frames with different heights and bracing types are analyzed based on the results of "Incremental Dynamic Analysis" (IDA) under near field ground motions. Fragility curves corresponding to IO (Immediate Occupancy) and CP (Collapse Prevention) limit states are extracted based on IDA curves. Results imply that, frames designed based on the near field seismic design criteria of UBC-97 are more reliable under near field ground motions and their failure probability is less comparing to others.

Evaluation of seismic performance factors for steel DIAGRID structural system design

  • Lee, Dongkyu;Shin, Soomi;Ju, Youngkyu
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.735-755
    • /
    • 2016
  • This article presents a proposed analytical methodology to determine seismic force-resisting system R-values for steel diagrid framed systems. As current model building codes do not explicitly address the seismic design performance factors for this new and emerging structural system, the purpose of this study is to provide a sound and reliable basis for defining such seismic design parameters. An approach and methodology for the reliable determination of seismic performance factors for use in the design of steel diagrid framed structural systems is proposed. The recommended methodology is based on current state-of-the-art and state-of-the practice methods including structural nonlinear dynamic analysis techniques, testing data requirements, building code design procedures and earthquake ground motion characterization. In determining appropriate seismic performance factors (R, ${\Omega}_O$, $C_d$) for new archetypical building structural systems, the methodology defines acceptably low values of probability against collapse under maximum considered earthquake ground shaking.

Probabilistic Precontract Pricing for Power System Security (전력계통 안정성확보를 위한 확률적 예약요금제)

  • 임성황;최준영;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.197-205
    • /
    • 1994
  • Security of a power system refers to its robustness relative to a set of imminent disturbances (contingencies) during operation. The socially optimal solution for the actuall level of generation/consumption has been well-known spot pricing at shot-run marginal cost. The main disadvantage of this approach arises because serious contingencies occur quite infrequently. Thus by establishing contractual obligations for contingency offering before an actual operation time through decision feedback we can obtain socially optimal level of system security. Under probabilistic precontract pricing the operating point is established at equal incremental cost of the expected short-run and collapse cost of each participant. Rates for power generation/consumption and for an offer to use during a contingency, as well as information on the probability distribution of contingency need for each participant, are derived so that individual optimization will lead to the socially optimal solution in which system security is optimized and the aggregate benefit is maxmized.

  • PDF

Application of FAD on Pressure Tube for the Probabilitic Integrity Assessment (파손평가선도를 이용한 압력관 결함의 확률론적 건전성 평가)

  • Kwak, Sang-Log;Wang, Jong-Bae;Park, Youn-Won;Lee, Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at uninspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of uninspected pressure tube. All the current integrity evaluations procedures are based on conventional deterministic approaches. So it is expected that the results obtained are too conservative to perform a rational evaluation of lifetime. More realistic failure criteria, based on FAD are also proposed for the probabilistic analysis. As a result of this study failure probabilities for various conditions are calculated, and examined application of FAD and LBB concept.

A Study on FAD Development for Probabilistic Pressure Tube Integrity Assessment (압력관의 확률론적평가에 타당한 파손평가선도 작성에 관한 연구)

  • Kwak, Sang-Log;Wang, Jong-Bae;Choi, Young-Hwan;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Pressure tubes are major component of nuclear reactor, but only selected samples are periodically examined due to numerous numbers of tubes. Current in-service inspection result show there is high probability of flaw existence at un-inspected pressure tube. Probabilistic analysis is applied in this study for the integrity assessment of un-inspected pressure tube. But all the current integrity evaluations procedures are based on conventional deterministic approaches. So many integrity evaluation parameters are not directly apply to probabilistic analysis. As a result of this study failure assessment diagram are proposed based on test data.

  • PDF

Entropy-based optimal sensor networks for structural health monitoring of a cable-stayed bridge

  • Azarbayejani, M.;El-Osery, A.I.;Taha, M.M. Reda
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.369-379
    • /
    • 2009
  • The sudden collapse of Interstate 35 Bridge in Minneapolis gave a wake-up call to US municipalities to re-evaluate aging bridges. In this situation, structural health monitoring (SHM) technology can provide the essential help needed for monitoring and maintaining the nation's infrastructure. Monitoring long span bridges such as cable-stayed bridges effectively requires the use of a large number of sensors. In this article, we introduce a probabilistic approach to identify optimal locations of sensors to enhance damage detection. Probability distribution functions are established using an artificial neural network trained using a priori knowledge of damage locations. The optimal number of sensors is identified using multi-objective optimization that simultaneously considers information entropy and sensor cost-objective functions. Luling Bridge, a cable-stayed bridge over the Mississippi River, is selected as a case study to demonstrate the efficiency of the proposed approach.

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

A Study on the Standard Durable Years of Pipe Framed Greenhouses (파이프 골조 온실 구조물의 표준내용연수 연구)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.96-101
    • /
    • 2001
  • In designing the greenhouse structures, snow and wind loads must be estimated on the basis of the probability of occurrence of snow or wind storms of a given intensity. The recurrence interval chosen depends on the standard durable years and safety factors of the greenhouse. This study was carried out to find the standard durable years of pipe framed greenhouses. Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse frames. A secular change of collapse loads and flexural rigidity for galvanized steel pipes were analyzed with the parts buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated as follows ; the small scale pipe houses of movable type is 7∼8 years and the large scale pipe houses of fixed type is 14∼15 years.

  • PDF