• Title/Summary/Keyword: Collapse Probability

Search Result 143, Processing Time 0.031 seconds

Effects of Explosion on Structures (폭발이 구조물에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Information on overpressure, positive phase duration, and impulse are required to assess the effects of shock waves or pressure waves on the structure. In this study, the overpressure and positive phase duration were determined by applying the Multi-Energy Method, which is found to be effective in analyzing the explosion of vapor clouds. Based on the total heat of combustion estimated in the cyclohexane vapor cloud explosion in the Nypro Ltd(UK), overpressure and positive phase duration at the distance of 40, 80, 120, 160, 200, 240, 280, 320, 360(m) from the source of explosion were evaluated. Overpressure was shown to decrease exponentially and positive phase duration increased almost linearly with distance. A probit function was used to assess the probability of damages for the structures at each distance using the overpressure and impact obtained at the above mentioned distances. The Analyses of probability of damages have shown that there is a high probability of collapse at distances within 120m, major damage to structures within 240m, and minor damage and breakage of window panes of structures occur over the entire distances.

Residual Longitudinal Strength of a VLCC Considering Probabilistic Damage Extents (확률론적 손상을 고려한 VLCC 잔류 종강도 평가)

  • Nam, Ji-Myung;Choung, Joon-Mo;Park, Ro-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.124-131
    • /
    • 2012
  • This paper provides prediction of ultimate longitudinal strengths of hull girder of a VLCC considering probabilistic damage extents due to collision and grounding accidents based on IMO Guideline(2003). The probability density functions of damage extents are expressed as a function of nondimensional damage variables. The accumulated probability levels of 10%, 30%, 50%, and 70% are taken into account for the damage extent estimation. The ultimate strengths have been calculated using in-house software UMADS (Ultimate Moment Analysis of Damaged Ships) which is based on the progressive collapse method. Damage indices are provided for all heeling angles due to any possible flooding of compartments from $0^{\circ}$ to $180^{\circ}$ which represent from sagging to hogging conditions, respectively. The analysis results reveal that minimum damage indices show different values according to heeling angles and damage levels.

Energy Exchanges and Adhesion Probability of Lennard-Jones Cluster Colliding with a Weakly Attractive Static Surface (클러스터-표면 충돌시 부착 확률과 에너지 교환에 대한 분자동력학 시물레이션)

  • Jung, Seung-Chai;Suh, Dong-Uk;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1788-1793
    • /
    • 2008
  • Classical molecular dynamics simulations (MDS) were conducted to simulate nano-sized cluster collisions with a weakly attractive static surface. Energy exchanges associated with the cluster collision and the adhesion probability are discussed. Routes of the energy exchanges and the kinetic energy loss are vastly altered in their mode according to the cluster incident velocity. In the elastic collision regime ($V_0$<0.1), most incident kinetic energy is recovered into the rebounding kinetic energy, but a little loss in the incident kinetic energy causes the cluster adhesion. Dissipated kinetic energy is converted into the rotational energy. In the weakly plastic collision regime (0.1<$V_0$<0.3), the transition from elastic to plastic collision occurs, and a large part of the released potential energy is converted into rebounding translational energy. For strongly plastic collisions ($V_0$>0.3), permanent cluster deformation occurs with extensive collapse of the lattice structure inducing a solid-to-solid phase transition; moreover, most of the cluster kinetic energy is converted into cluster potential and thermal energy.

  • PDF

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

Response modification factor and seismic fragility assessment of skewed multi-span continuous concrete girder bridges

  • Khorraminejad, Amir;Sedaghati, Parshan;Foliente, Greg
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2021
  • Skewed bridges, being irregular structures with complicated dynamic behavior, are more susceptible to earthquake damage. Reliable seismic-resistant design of skewed bridges can be achieved by accurate determination of nonlinear seismic demands. However, the effect of geometric characteristics on the response modification factor (R-factor) is not accounted for in bridge design practices. This study attempts to investigate the effects of changes in the number of spans, skew angle and bearing stiffness on R-factor values and to assess the seismic fragility of skewed bridges. Results indicated that changes in the skew angle had no significant effect on R-factor values which were in consonance with code-prescribed R values. Also, unlike the increase in the number of spans that resulted in a decrease in the R-factor, the increase in bearing stiffness led to higher R-factor values. Findings of the fragility analysis implied that although the increase in the number of spans, as well as the increase in the skew angle, led to a higher failure probability, greater values of bearing stiffness reduced the collapse probability. For practicing design engineers, it is recommended that maximum demands on substructure elements to be calculated when the excitation angle is applied along the principal axes of skewed bridges.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

Iterative-R: A reliability-based calibration framework of response modification factor for steel frames

  • Soleimani-Babakamali, Mohammad Hesam;Nasrollahzadeh, Kourosh;Moghadam, Amin
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.59-74
    • /
    • 2022
  • This study introduces a general reliability-based, performance-based design framework to design frames regarding their uncertainties and user-defined design goals. The Iterative-R method extracted from the main framework can designate a proper R (i.e., response modification factor) satisfying the design goal regarding target reliability index and pre-defined probability of collapse. The proposed methodology is based on FEMA P-695 and can be used for all systems that FEMA P-695 applies. To exemplify the method, multiple three-dimensional, four-story steel special moment-resisting frames are considered. Closed-form relationships are fitted between frames' responses and the modeling parameters. Those fits are used to construct limit state functions to apply reliability analysis methods for design safety assessment and the selection of proper R. The frameworks' unique feature is to consider arbitrarily defined probability density functions of frames' modeling parameters with an insignificant analysis burden. This characteristic enables the alteration in those parameters' distributions to meet the design goal. Furthermore, with sensitivity analysis, the most impactful parameters are identifiable for possible improvements to meet the design goal. In the studied examples, it is revealed that a proper R for frames with different levels of uncertainties could be significantly different from suggested values in design codes, alarming the importance of considering the stochastic behavior of elements' nonlinear behavior.

Seismic Performance Assessment of Unreinforced Masonry Wall Buildings Using Incremental Dynamic Analysis (증분동적해석을 통한 비보강 조적벽식 건물의 내진성능 평가)

  • Kwon, Ki Hyuk;Kim, Man Hoe;Kim, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.28-39
    • /
    • 2013
  • The most common housing type in Korea is low-rise buildings with unreinforced masonry walls (UMWs) that have been known as a vulnerable seismic-force-resisting system (SFRS) due to the lack of ductility capacities compared to high lateral stiffness of an UMW. However, there are still a little experimental investigation on the shear strength and stiffness of UMWs and on the seismic performance of buildings using UMWs as a SFRS. In Korea, the shear strength and stiffness of UMWs have been evaluated with the equations suggested in FEMA 356 which can not reflect the structural and material characteristics, and workmanship of domestic UMW construction. First of all, this study demonstrates the differences in shear strength and stiffness of UMWs obtained from between FEMA 356 and test results. The influence of these differences on the seismic performance of UMW buildings is then discussed with incremental dynamic analyses results of a prototype UMW building that were selected by the site survey of more than 200 UMW buildings and existing test results of UMWs. The seismic performance assessment of the prototype UMW building are analyzed based on collapse margin ratios and beta values repesenting uncertainty of seismic capacity. Analysis results show that the seismic performance of the UMW building estimated using the equations in FEMA 356 underestimates both a collapse margin ratio and a beta value compared to that estimated by test results. Whatever the estimation is carried out two cases, the seismic performance of the prototype building does not meet the criteria prescribed in a current Korean seismic code and about 90% collapse probability presents for more than 30-year-old UMW buildings under earthquakes with 2400 return years.

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

Damage Probabilities according to the Structural Characteristics of Bridges and the Determination of Target Ductilities (교량의 구조특성에 따른 손상확률과 목표연성도 결정)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • The target performance of a current seismic design code is to achieve collapse-prevention in order to minimize casualties. Existing structures are also being retrofitted to meet this target performance. This seismic performance seems to have been achieved in recent great overseas earthquakes, but the accompanying enormous economic loss is pointed out as a new problem. A new seismic design concept over the current target performance is required to reduce economic loss, in which a target performance is determined by the damage probability in order to control the damage levels of structures. In this study, the seismic behavior of bridges having different characteristics was investigated by nonlinear seismic analyses, and fragility curves with respect to a reference damage level were derived. Based on these results, the characteristics of target ductilities satisfying a target damage probability were investigated.