• Title/Summary/Keyword: Collagen synthesis

Search Result 445, Processing Time 0.023 seconds

Development of Serum-Free Media for Primary Culture of Human Articular Chondrocytes

  • CHOI YONG SOO;LIM SANG MIN;LEE CHANG WOO;KIM DONG-IL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1299-1303
    • /
    • 2005
  • Human articular chondrocytes (HAC) were cultivated as a monolayer in a serum-free medium for primary culture (SFM-P). An optimized SFM-P provides $95\%$ proliferation rate of that obtainable from primary and secondary chondrocyte cultures grown in a control medium with serum. The gradual decrease in the amounts of synthesized glycosaminoglycan and type II collagen was improved by coating the culture dishes with type IV collagen and fibronectin. A significant improvement in the expression of type II collagen and aggrecan mRNA could be achieved. In addition, the monolayer cultures showed better synthesis of the extracellular matrices than alginate-bead cultures in SFM-P.

In Vitro and In Vivo Bone-Forming Effect of a Low-Molecular-Weight Collagen Peptide

  • Jae Min Hwang;Mun-Hoe Lee;Yuri Kwon;Hee-Chul Chung;Do-Un Kim;Jin-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.415-424
    • /
    • 2024
  • This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 ㎍/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.

2-Deoxy-D-glucose Regulates Dedifferentiation but not Cyclooxygenase-2 Expression through Reorganization of Actin Cytoskeletal Architecture in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.113-118
    • /
    • 2009
  • Actin cytoskeletal architecture is believed to be a crucially important modulator of chondrocyte phenotype. 2DG(2-Dexoy-D-glucose) induces reorganization of actin cytoskeletal architecture in chondrocytes. In this study, we have investigated the effects of 2DG on dedifferentiation and inflammation via reorganization of cytoskeletal architecture in rabbit articular chondrocytes, with a focus on p38 kinase pathway. Treatment of 2DG alone reduced type II collagen and COX-2 expression in chondrocytes. But, 2DG reduced type II collagen was recovered by CD, disruptor of actin cytoskeletal architecture, whereas did not affect on COX-2 expression and production of $PGE_2$ compared with 2DG alone treated cells. Treatment of 2DG with JAS, inducer of cytoskeletal architecture polymerization, accelerated reduction of type II collagen expression and synthesis of proteoglycan but did not affect on COX-2 expression and production of $PGE_2$. Also, 2DG stimulated activation of p38 kinase. This result showed that 2DG regulates type II collagen but not cyclooxygenase-2 expression through reorganization of cytoskeletal architecture via p38 kinase pathway in rabbit articular chondrocytes.

  • PDF

A novel L-ascorbic acid and peptide conjugate with increased stability and collagen biosynthesis

  • Choi, Ho-Il;Park, Jong-Il;Kim, Heung-Jae;Kim, Dong-Won;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.743-746
    • /
    • 2009
  • L-ascorbic acid (Vitamin C) and peptide are both useful compounds for collagen biosynthesis in cosmeceuticals (cosmetic and pharmaceutical fields). The instability of these compounds, however, limit their application in these industries. In this report, we describe the development of a novel compound, Stabilized Ascorbyl Pentapeptide (SAP), which physically is much more stable than L-ascorbic acid in water. The inhibitory effects of this SAP compound on tyrosinase and melanin synthesis is comparable to that of L-ascorbic acid. Importantly, the SAP compound displays no cytotoxicity at a high concentration (5 mM). The ability of SAP to promote collagen biosynthesis is greater than that of L-ascorbic acid or the KTTKS peptide alone. Considering the in vitro stability and functional effects, our data strongly suggest that the SAP compound is a good candidate not only as a cosmetic ingredient, but also as a wound healing agent.

Antioxidant and Antiwrinkle Effects of Persimmon Leaves extract (시엽(Persimmon Leaves) 에탄올 추출물의 항산화와 항주름 효과)

  • Sung-Hee Kim;Dong-Hee Kim;Wi-Hye Yeon;Jin-Tae Lee;Young-Ah Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.534-546
    • /
    • 2023
  • In this study, we investigated the antioxidant and anti-winkle activity in human fibroblast cell (CCD-986sk) of Persimmon Leaves (PL) as a cosmetic ingredient. As a result of investigating antioxidant activity through electron-donating ability and ABTS+ radical scavenging assay, the PL showed concentration-dependent antioxidant activity similar to ascorbic acid, a control group, at a concentration of 1,000 ㎍/ml. As a result of investigating the anti-wrinkle effect through elastase inhibition and collagenase inhibition assay, the PL showed concentration-dependent antioxidant activity similar to epigallocatechin gallate, a control group, at a concentration of 1,000 ㎍/ml. As a result of measuring the synthesis rate of pro-collagen type I and the inhibition rate of MMP-1 in UVB-induced CCD-986sk cells, the control group EGCG showed a 90.2% pro-collagen synthesis rate at 20 ㎍/ml and PL showed an 88.5% synthesis rate at 30 ㎍/ml. In addition, the inhibition rate of MMP-1 of 33.0% and 40.8% were confirmed in EGCG 20 ㎍/ml and PL 30 ㎍/ml, respectively. As a result of measuring the protein expression of pro-collagen type I and MMP-1 in the PL through western blot, it was confirmed that the protein expression of pro-collagen type I increased, and MMP-1 decreased when the PL was treated together compared to the UVB alone group. According to the above experimental results, it is expected to be used as a natural product material for cosmetics by confirming that the PL prevent photoaging caused by UVB stimulation and have antioxidant and anti-wrinkle effects.

Effect of Pine (Pinus densiflora) Needle Extracts on Synthesis of Collagen in Osteoblastic MC3T3-E1 Cells (적송잎 추출물이 조골세포의 collagen 합성에 미치는 영향)

  • Jeon, Min-Hee;Kim, Young-Kyoung;Park, Yong-Soo;Hwang, Hyun-Jung;Kim, Sung-Gu;Lee, Sang-Hyeon;Choi, In-Soon;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.607-613
    • /
    • 2010
  • Osteoporosis is a disease involving a decrease in bone mineral density and an increased risk of fractures. The MC3T3-E1 pre-osteoblastic cell line is a well-accepted model of osteogenesis in vitro. Pine needles have long been used as a traditional health-promoting medicinal food in Korea. In this study, MTT assay, the alkaline phosphatase (ALP) activity and collagen synthesis of osteoblast cells were investigated to determine the effects of pine needle extracts on cell proliferation and differentiation. Pine needle extracts were prepared using hexane, ethanol and water. The effects of the pine needle extracts were examined by comparing the results with those of commercial agents, such as proanthocyanidin. The MC3T3-E1 cells exposed to proanthocyanidin showed increased proliferation in a concentration-dependent manner. The cells exposed to the hexane extract showed a similar increase in proliferation to that observed with proanthocyanidin. The hexane extract showed the highest ALP activity. Moreover, a supplement of pine needle extracts induced collagen synthesis in MC3T3-E1 cells. The pine needle extract produced the highest level of collagen synthesis at concentrations of $10{\sim}50\;{\mu}g/ml$. These results indicate that pine needle extracts have an anabolic effect on bone by promoting osteoblastic differentiation, and may be used in the treatment of common metabolic bone diseases.

Anti-Fibrotic Effects by Moringa Root Extract in Rat Kidney Fibroblast (모링가 뿌리 추출물에 대한 신장섬유화 억제 효과)

  • Park, Su-Hyun;Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1371-1377
    • /
    • 2012
  • Fibrosis in kidney by internal and external factors causes progressive loss of renal function. Renal fibrosis is the inevitable consequence of an excessive accumulation of the extracellular matrix. TGF-${\beta}$ plays an important role in the process of renal fibrosis and stimulates the synthesis of profibrotic factors, including collagens, fibronectin, and plasminogen activator inhibitor (PAI-1). We examined the effect of Moringa oleifera Lam (moringa) extracts in a rat kidney fibrosis model. We found that moringa root extract suppresses protein expression/mRNA levels of Type I collagen, fibronectin, and PAI-1 induced by TGF-${\beta}$ in renal fibroblasts. Moringa root extract selectively inhibited phosphorylation of TGF-${\beta}$-induced $T{\beta}RII$ and the downstream signaling pathway (e.g., Smad4), and phospho-ERK, but not JNK, p38, or PI3K/AKT. These results suggest that moringa root extract can act against TGF-${\beta}$-induced renal fibrosis in rat kidney fibroblast cells by a mechanism related to its antifibrotic activity, which regulates expression of fibronectin, Type I collagen, and PAI-1 through $T{\beta}RII$-Smad2/3-Smad4 and ERK. Therefore, moringa root extract is an effective substance for fibrosis therapy and provides a new therapeutic strategy for diseases associated with elevated profibrotic factor synthesis.

Electrical Stimulation Induces the Collagen Deposition and TGF-${\beta}$1 mRNA Expression in Skin Wound of Rat

  • Lee, Jae-Hyoung;Park, Chan-Eui;Park, Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.87-92
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the effect of electrical stimulation (ES) on the wound closure rate, collagen deposition, and TGF-${\beta}$1 mRNA expression in skin wound of rat. Methods: Twenty male Sprague-Dawley rats (222~271 g) were randomly divided into ES (n=10) and control group (n=10). The ES group received a cathodal stimulation with 50 V at 100 pps for 30 minutes for 7 days, while the control group was not given electrical stimulation. The wound closure rate, collagen density and TGF-${\beta}$1 mRNA ratio were measured. Results: The mean wound closure rates in the ES and control groups were $83.79{\pm}16.35$% and $51.57{\pm}17.76$%, respectively (p<0.001). The collagen density in the ES and control groups were $46.67{\pm}10.68$% and $25.03{\pm}13.09$%, respectively (p<0.001). The TGF-${\beta}$1 mRNA ratio in the ES and control groups were $1.35{\pm}0.60$ and $0.63{\pm}0.30$, respectively at 6 hours post-wound (p<0.01) and $1.69{\pm}0.47$ and $1.32{\pm}0.28$, respectively, at 7 days post-wound (p<0.05). Conclusions: ES accelerated the wound closure rate of skin incision wounds and was accompanied by an increase in collagen deposition in the regenerating dermis. In addition, ES increased TGF-${\beta}$1 mRNA expression during wound healing process. These findings suggest that ES may activate TGF-${\beta}$1 expression, and may increase synthesis activities of fibroblasts in regenerating skin wounds in rats.