• 제목/요약/키워드: Collaborative Tag

검색결과 37건 처리시간 0.019초

TagPlus: 폭소노미에서 동의어 태그를 이용한 검색 시스템 (TagPlus: A Retrieval System using Synonym Tag in Folksonomy)

  • 이선숙;용환승
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권3호
    • /
    • pp.255-262
    • /
    • 2007
  • 태깅은 사용자들이 공유된 콘텐츠에 키워드의 형태로 메타 데이터를 추가하는 과정이다. 최근 이러한 태깅은 웹 상 에서 더 많은 사용자들에게 사용되어지고 있는 추세인데, 이런 태깅 사이트는 사용자가 북마크, 사진, 비디오 등의 콘텐츠에 태그를 추가할 수 있도록 한다. 본 논문에서는 사용자의 참여를 바탕으로 하는 태깅 시스템의 구조와 배경 지식 또 이런 시스템이 가지는 다양한 의미와 한계들을 분석한다. 또한 WordNet 데이터베이스의 동의어 집합을 태그의 검색에 적용한 TagPlus 시스템을 제안하고 Flickr 이미지 공유 시스템으로부터 동의어 태그 검색을 가능하도록 구현하였다.

  • PDF

How to improve the diversity on collaborative filtering using tags

  • Joo, Jin-Hyeon;Park, Geun-Duk
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권7호
    • /
    • pp.11-17
    • /
    • 2018
  • In this paper, we propose how to improve the lack of diversity in collaborative filtering, using tag scores contained in items rather than ratings of items. Collaborative filtering has excellent performance among recommendation system, but it is evaluated as lacking diversity. In order to solve this problem, this paper proposes a method for supplementing diversity lacking in collaborative filtering by using tags. By using tags that can be used universally without using the characteristics of specific articles in a recommendation system, The proposed method can be used.

잠재 요인 모델의 원리를 이용한 협업 태그 기반 추천 방법 (Collaborative Tag-Based Recommendation Methods Using the Principle of Latent Factor Models)

  • 김형도
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.47-57
    • /
    • 2009
  • 협업에 의한 태그 작성 시스템은 소셜 네트워크에서 다양한 공유 콘텐츠에 사용자가 태그를 부착할 수 있도록 허용하는데, 이러한 태그들은 본인뿐만 아니라 모든 커뮤니티 사용자들이 콘텐츠를 이용하는데 유용함을 준다. 협업 태그 기반의 추천에서는 사용자와 항목, 그리고 태그로 이루어진 3차원 데이터를 이용하는데, 이 데이터는 일반적으로 사용자와 항목으로 이루어진 2차원 데이터에 비하여 더 방대한 반면, 희소성(Sparsity)이 더 높다. 따라서 기존의 협업 필터링 기법을 바로 적용하는데 어려움이 많다. 잠재 요인 모델(Latent Factor Model)은 관찰된 값을 설명하는 잠재된 특징(요인)들을 밝히고, 이를 이용해서 문제를 해결하기 위한 모델로서 최근 협업 필터링에서도 성공적으로 적용되고 있으나, 모델을 학습하거나 개선하는 단계에서는 많은 시간과 노력이 필요하다는 단점이 있다. 이러한 잠재 요인 모델을 3차원 협업 태그 데이터에 적용하기 위해서는, 계산이 복잡한 협업 필터링 모델 수립의 어려움을 극복해야 한다. 이 논문에서는 사용자가 항목에 대해 사용한 태그들을 사용자 및 항목에 대한 잠재요인으로 간주하여 직관적인 모델을 수립하고, 사용자의 아이템에 대한 선호도를 결정하는 여러 가지 방법들을 제안하고, 실제 협업 태그 데이터를 이용하여 이들을 비교 평가한다.

  • PDF

UniTag 온톨로지를 이용한 태그 기반 음악 추천 기법 (A Tag-based Music Recommendation Using UniTag Ontology)

  • 김현희
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권11호
    • /
    • pp.133-140
    • /
    • 2012
  • 본 논문에서는 소셜 음악 사이트에서 사용자들이 생성한 태그를 바탕으로 음악을 추천하는 기법을 제안한다. 협력적 태깅 시스템은 사용자가 직접 선정한 단어를 콘텐츠에 부여할 수 있도록 하므로, 사용자의 선호도를 구체적으로 파악할 수 있는 정보를 제공한다. 특히, 감정을 표현하는 감정 태그들은 음악 장르나 음악가와 같이 사실을 나타내는 사실 태그들과는 다르게 선호도를 훨씬 직접 표현하고 있다. 따라서 태그의 의미를 파악하여 감정 태그와 사실 태그로 분류하고, 감정 태그는 감정표현의 정도에 따라 가중치를 부여하기 위해서 UniTag라고 하는 태그 온톨로지를 개발하였다. UniTag 온톨로지를 이용하여 정제된 태그 집합은 사용자 프로파일 생성에 사용되며, 태그 기반 사용자 프로파일을 바탕으로 음악 추천 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 전통적인 청취 횟수 기반 추천, 감정 태그 가중치를 고려하지 않은 추천, 그리고 감정 태그 가중치를 고려한 추천의 세 가지 추천 방법의 정확도와 재현율을 비교하였다. 실험 결과는, 감정 태그 가중치를 고려한 추천 방식이 정확도의 측면에서 다른 두 가지 방식보다 효율적이라는 것을 보여준다.

협업 필터링을 활용한 태그 키워드 기반 개인화 북마크 검색 추천 시스템 (Personalized Bookmark Search Word Recommendation System based on Tag Keyword using Collaborative Filtering)

  • 변영호;홍광진;정기철
    • 한국멀티미디어학회논문지
    • /
    • 제19권11호
    • /
    • pp.1878-1890
    • /
    • 2016
  • Web 2.0 has features produced the content through the user of the participation and share. The content production activities have became active since social network service appear. The social bookmark, one of social network service, is service that lets users to store useful content and share bookmarked contents between personal users. Unlike Internet search engines such as Google and Naver, the content stored on social bookmark is searched based on tag keyword information and unnecessary information can be excluded. Social bookmark can make users access to selected content. However, quick access to content that users want is difficult job because of the user of the participation and share. Our paper suggests a method recommending search word to be able to access quickly to content. A method is suggested by using Collaborative Filtering and Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare by 'Delicious' and "Feeltering' with our system.

Spark를 이용한 항목 추천 기법에 관한 연구 (Item Recommendation Technique Using Spark)

  • 윤소영;윤성대
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.715-721
    • /
    • 2018
  • 모바일 기기의 확산으로 소셜 네트워크 서비스나 전자상거래 사이트의 사용자 수가 급증하고 있고 사용자들이 남긴 데이터의 양도 기하급수적으로 증가하고 있다. 그로 인해 전자 상거래 기업들은 사용자들이 남긴 방대한 양의 데이터로부터 어떻게 유용한 정보를 추출할 것인가 하는 과제를 갖게 되었다. 이러한 문제를 해결하기 위해 추천 시스템에 빅 데이터 처리 기법을 적용한 다양한 연구들이 이루어지고 있다. 본 논문에서는 Apache Spark 플랫폼에서 Tag 가중치를 적용한 협업 필터링 기법을 사용한 추천방식을 제안한다. 제안하는 기법은 추천의 정확성을 높이기 위해 전처리 과정에서 Tag 데이터를 정제하고 아이템을 분류한 후 아이템 평가값에 기간 정보와 Tag 가중치를 적용하여 사용한다. RDD(Resilient Distributed Dataset)를 생성한 후 아이템 유사도와 예측값을 구하고 사용자에게 아이템을 추천한다. 실험을 통해 제안 하는 기법이 대량의 데이터를 빠르게 처리하고 추천의 적합성도 향상되는 것을 확인하였다.

FolksoViz: Wikipedia 본문을 이용한 상하위 관계 기반 폭소노미 시각화 기법 (FolksoViz: A Subsumption-based Folksonomy Visualization Using the Wikipedia)

  • 이강표;김현우;장충수;김형주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권4호
    • /
    • pp.401-411
    • /
    • 2008
  • 다수의 사용자들의 협력태깅으로 생성되는 폭소노미는 웹 2.0을 이끌고 있는 대표적인 요소이다. 태그는 어떤 웹 문서를 기술하는 웹 메타데이타라고 할 수 있는데, 협력태깅으로 이루어진 태그들 사이의 의미적인 상하위 관계를 밝혀내 이를 시각화한다면, 사용자들이 문서의 메타데이타를 보다 직관적으로 이해하는 데 도움을 줄 수 있다. 이에 본 논문에서는 del.icio.us의 태그들을 대상으로 하여, Wikipedia 텍스트를 이용한 태그들간 상하위 관계 산출 기법을 제안한다. 이를 위해 태그들이 Wikipeida 텍스트상에서 출현하는 빈도수를 기반으로 태그들간 상하위 관계를 산출하는 통계적인 모델링을 제안하였고, 각각의 태그를 그에 상응하는 Wikipedia 텍스트에 매핑시키는 TSD 기법을 제안하였다. 이렇게 산출된 상하위 관계 짝들은 시각화 기법을 통하여 효과적으로 화면에 표현되었다. 실제로 우리가 제안하는 알고리즘이 태그들간의 상하위 관계들을 높은 정확도로 찾아내었음을 실험을 통해 확인하였다.

사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템 (A Hybrid Music Recommendation System Combining Listening Habits and Tag Information)

  • 김현희;김동건;조진남
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.107-116
    • /
    • 2013
  • 본 연구에서는 소셜 음악 사이트에서 사용자들이 음악 아이템을 청취한 횟수와 생성한 태그 정보를 혼합하여 음악을 추천하는 시스템을 제안한다. 현재, 상용화된 음악 추천 시스템들은 주로 사용자의 청취 습관과 외부적인 선호도 입력값을 기반으로 음악을 추천하고 있다. 그러나 이 방식은 아직 음악을 청취한 사용자가 많지 않은 새로운 음악이나 청취 정보가 없는 새로운 사용자의 경우 추천하는 데 어려움이 있다. 이 문제를 해결하기 위해서 본 논문에서는 사용자가 선정한 키워드를 아이템에 부여하는 협업 태깅으로 생성된 태그 정보를 활용하였다. 태그의 의미를 파악하여 감정 표현의 정도에 따라 가중치를 부여한 뒤, 태그 점수와 청취 횟수를 혼합하여 음악 아이템의 선호도를 산출하였다. 이를 기반으로 사용자 프로파일을 생성하고 협업 필터링 알고리즘을 수행하였다. 제안하는 추천 방법의 효율성을 평가하기 위해서, 청취 습관 기반 추천, 태그 점수 기반 추천, 하이브리드 추천 방법의 세 가지 추천 방법에 대해서 정확도, 재현율, 그리고 F-measure를 계산하였다. 실험 결과에 대해 통계적 검증을 시행한 결과, 하이브리드 추천 방법이 다른 두 가지 방식보다 통계적으로 유의한 차이를 보여 성능이 우수한 것으로 나타났다.

상황인식 정보 검색 기법을 이용한 하이브리드 협업 필터링 기법 (A Hybrid Collaborative Filtering Method using Context-aware Information Retrieval)

  • 김성림;권준희
    • 디지털산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.143-149
    • /
    • 2010
  • In ubiquitous environment, information retrieval using collaborative filtering is a popular technique for reducing information overload. Collaborative filtering systems can produce personal recommendations by computing the similarity between your preference and the one of other people. We integrate the collaboration filtering method and context-aware information retrieval method. The proposed method enables to find some relevant information to specific user's contexts. It aims to makes more effective information retrieval to the users. The proposed method is conceptually comprised of two main tasks. The first task is to tag context tags by automatic tagging technique. The second task is to recommend items for each user's contexts integrating collaborative filtering and information retrieval. We describe a new integration method algorithm and then present a u-commerce application prototype.

User-Created Content Recommendation Using Tag Information and Content Metadata

  • Rhie, Byung-Woon;Kim, Jong-Woo;Lee, Hong-Joo
    • Management Science and Financial Engineering
    • /
    • 제16권2호
    • /
    • pp.29-38
    • /
    • 2010
  • As the Internet is more embedded in people's lives, Internet users draw on new Internet applications to express themselves through "user-created content (UCC)." In addition, there is a noticeable shift from text-centered contents mainly posted on bulletin boards to multimedia contents such as images and videos on UCC web sites. The changes require different way of recommendations comparing to traditional products or contents recommendation on the Internet. This paper aims to design UCC recommendation methods with user behavior data and contents metadata such as tags and titles, and compare performances of the suggested methods. Real web logs data of a major Korean video UCC site was used to empirical experiments. The results of the experiments show that collaborative filtering technique based on similarity of UCC customers' preferences performs better than other content-based recommendation methods based on tag information and content metadata.