• Title/Summary/Keyword: Collaborative Entropy

Search Result 19, Processing Time 0.019 seconds

Improved Collaborative Filtering Using Entropy Weighting

  • Kwon, Hyeong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we evaluate performance of existing similarity measurement metric and propose a novel method using user's preferences information entropy to reduce MAE in memory-based collaborative recommender systems. The proposed method applies a similarity of individual inclination to traditional similarity measurement methods. We experiment on various similarity metrics under different conditions, which include an amount of data and significance weighting from n/10 to n/60, to verify the proposed method. As a result, we confirm the proposed method is robust and efficient from the viewpoint of a sparse data set, applying existing various similarity measurement methods and Significance Weighting.

  • PDF

Applying Consistency-Based Trust Definition to Collaborative Filtering

  • Kim, Hyoung-Do
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.366-375
    • /
    • 2009
  • In collaborative filtering, many neighbors are needed to improve the quality and stability of the recommendation. The quality may not be good mainly due to the high similarity between two users not guaranteeing the same preference for products considered for recommendation. This paper proposes a consistency definition, rather than similarity, based on information entropy between two users to improve the recommendation. This kind of consistency between two users is then employed as a trust metric in collaborative filtering methods that select neighbors based on the metric. Empirical studies show that such collaborative filtering reduces the number of neighbors required to make the recommendation quality stable. Recommendation quality is also significantly improved.

Models and Methods for the Evaluation of Automobile Manufacturing Supply Chain Coordination Degree Based on Collaborative Entropy

  • Xiao, Qiang;Wang, Hongshuang
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.208-222
    • /
    • 2022
  • Through the analysis of the coordination mechanism of the supply chain system of China's automobile manufacturing industry, the factors affecting the supply subsystem, the manufacturing subsystem, the sales subsystem, and the consumption subsystem are sorted out, the supply chain coordination index system based on the influence factor of four subsystems is established. The evaluation models of the coordination degree in the subsystem of the supply chain, the coordination degree among the subsystems, and the comprehensive coordination degree are established by using the efficiency coefficient method and the collaborative entropy method. Experimental results verify the accuracy of the evaluation model using the empirical analysis of the collaborative evaluation index data of China's automobile manufacturing industry from 2000 to 2019. The supply chain synergy of automobile manufacturing industry was low from 2001 to 2005, and it increased to a certain extent from 2006 to 2008 with a small growth rate from 0.10 to 0.15. From 2009 to 2013, the supply chain synergy of automobile manufacturing industry increased rapidly from 0.24 to 0.49, and it also increased rapidly but fluctuated from 2014 to 2019, first rising from 0.68 to 0.84 then dropping to 0.71. These results provide reference for the development of China's automobile manufacturing supply chain system and scientific decision-making basis for the formulation of relevant policies of the automobile manufacturing industry.

Entropy-based Similarity Measures for Memory-based Collaborative Filtering

  • Kwon, Hyeong-Joon;Latchman, Haniph
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • We proposed a novel similarity measure using weighted difference entropy (WDE) to improve the performance of the CF system. The proposed similarity metric evaluates the entropy with a preference score difference between the common rated items of two users, and normalizes it based on the Gaussian, tanh and sigmoid function. We showed significant improvement of experimental results and environments. These experiments involved changing the number of nearest neighborhoods, and we presented experimental results for two data sets with different characteristics, and results for the quality of recommendation.

Efficient Transform Coefficient Coding for the HEVC Intra Frame Coder (HEVC 화면내 부호기를 위한 효율적인 변환 계수 부호화 방법)

  • Choi, Jung A;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.6-11
    • /
    • 2012
  • In the HEVC standard, transform coefficient coding that affects the output bitstream directly is a core part of the encoder and it includes coefficient scanning and entropy coding. Recently, JCT-VC(Joint Collaborative Team on Video Coding) advances to HEVC Committee Draft (CD). In this paper, we explain HEVC transform coefficient coding and propose an efficient transform coefficient coding method considering statistics of transform coefficients in the intra frame coder. The proposed method reduces BD-Rate by up to 0.74%, compared to the conventional HEVC transform coefficient coding.

  • PDF

Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System (사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출)

  • Ko Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.581-591
    • /
    • 2005
  • Collaborative filtering systems have problems involving sparsity and the provision of recommendations by making correlations between only two users' preferences. These systems recommend items based only on the preferences without taking in to account the contents of the items. As a result, the accuracy of recommendations depends on the data from user-rated items. When users rate items, it can be expected that not all users ran do so earnestly. This brings down the accuracy of recommendations. This paper proposes a collaborative recommendation method for extracting typical group preferences using user-item matrix optimization and user profiles in collaborative tittering systems. The method excludes unproven users by using entropy based on data from user-rated items and groups users into clusters after generating user profiles, and then extracts typical group preferences. The proposed method generates collaborative user profiles by using association word mining to reflect contents as well as preferences of items and groups users into clusters based on the profiles by using the vector space model and the K-means algorithm. To compensate for the shortcoming of providing recommendations using correlations between only two user preferences, the proposed method extracts typical preferences of groups using the entropy theory The typical preferences are extracted by combining user entropies with item preferences. The recommender system using typical group preferences solves the problem caused by recommendations based on preferences rated incorrectly by users and reduces time for retrieving the most similar users in groups.

Non-fixed Quantization Considering Entropy Encoding in HEVC (HEVC 엔트로피 부호화를 고려한 비균등 양자화 방법)

  • Gweon, Ryeong-Hee;Han, Woo-Jin;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1036-1046
    • /
    • 2011
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing HEVC(High Efficiency Video Coding) standard. All transform coefficients in a TU(Transform Unit) have been equally quantized according to the quantization and inverse quantization method which is used in HEVC standard. Such an equal quantization is not efficient because the transformed coefficients in the TU are not eqully distributed. Furthermore, the quantized coefficients which is positioned in later scanning order cannot be efficient due to the entropy scanning method. We suggest an algorithm that transform coefficients are quantized at different values according to the position in TU considering a scanning order of entropy encoding to improve the coding efficiency. The principle of this algorithm is that quantization and inverse quantization are carried out according to the scanning order which is in accordance with the statistical characteristic of distribution of quantized transform coefficients. The proposed algorithm shows on the average of 0.34% Y BD-rate compression rate improvement.

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • v.11 no.3
    • /
    • pp.137-153
    • /
    • 2005
  • Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.

Using User Rating Patterns for Selecting Neighbors in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.77-82
    • /
    • 2019
  • Collaborative filtering is a popular technique for recommender systems and used in many practical commercial systems. Its basic principle is select similar neighbors of a current user and from their past preference information on items the system makes recommendations for the current user. One of the major problems inherent in this type of system is data sparsity of ratings. This is mainly caused from the underlying similarity measures which produce neighbors based on the ratings records. This paper handles this problem and suggests a new similarity measure. The proposed method takes users rating patterns into account for computing similarity, without just relying on the commonly rated items as in previous measures. Performance experiments of various existing measures are conducted and their performance is compared in terms of major performance metrics. As a result, the proposed measure reveals better or comparable achievements in all the metrics considered.