• 제목/요약/키워드: Collaborative CRM

검색결과 22건 처리시간 0.023초

운항승무원 실수 특성에 관한 연구 : LOSA를 중심으로 (A study on the characteristics on the error of the flight crew)

  • 최진국;김칠영
    • 한국항공운항학회지
    • /
    • 제17권2호
    • /
    • pp.62-67
    • /
    • 2009
  • LOSA is a flight safety program that analyses human errors in normal operations. Trained pilot observers monitor the normal flights at the observer seat. LOSA is a proactive non jeopardy data collection tool using threat and error management(TEM) as a framework. With the analysis of crew behaviors through LOSA with The LOSA collaborative(TLC), the airlines can identify the behaviors of the crew during normal operations. The major objective of LOSA is to measure how the crew manage threats, errors and undesired aircraft deviations in the cockpit on day to day operations. The airlines are able to set up effective TEM training with practical six generation Crew recourse management(CRM) with data of error from LOSA instead of theoretical CRM courses. The Airlines can use TEM as an integral part of a Safety Management System(SMS) and uses monitoring and cross-checking skills in the flight operations to manage threats and errors effectively when we know the errors we make in the cockpit on daily operation. The result of LOSA indicates that the error detection rate should be enhanced since around the half of the errors went undetected. The areas which should be focused for enhancing the error detection are monitor, cross-check, the management of workload, automation and taxiway/ runway to manage errors effectively.

  • PDF

이동통신 환경 하에서의 고객관계관리를 위한 지역광고 추천 모형 (Location-based Advertisement Recommendation Model for Customer Relationship Management under the Mobile Communication Environment)

  • 안현철;한인구;김경재
    • Asia pacific journal of information systems
    • /
    • 제16권4호
    • /
    • pp.239-254
    • /
    • 2006
  • Location-based advertising or application has been one of the drivers of third-generation mobile operators' marketing efforts in the past few years. As a result, many studies on location-based marketing or advertising have been proposed for recent several years. However, these approaches have two common shortcomings. First. most of them just suggested the theoretical architectures, which were too abstract to apply it to the real-world cases. Second, many of these approaches only consider service provider (seller) rather than customers (buyers). Thus, the prior approaches fit to the automated sales or advertising rather than the implementation of CRM. To mitigate these limitations, this study presents a novel advertisement recommendation model for mobile users. We call our model MAR-CF (Mobile Advertisement Recommender using Collaborative Filtering). Our proposed model is based on traditional CF algorithm, but we adopt the multi-dimensional personalization model to conventional CF for enabling location-based advertising for mobile users. Thus, MAR-CF is designed to make recommendation results for mobile users by considering location, time, and needs type. To validate the usefulness of our recommendation model. we collect the real-world data for mobile advertisements, and perform an empirical validation. Experimental results show that MAR-CF generates more accurate prediction results than other comparative models.

베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템 (Preference Prediction System using Similarity Weight granted Bayesian estimated value and Associative User Clustering)

  • 정경용;최성용;임기욱;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.316-325
    • /
    • 2003
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.

협업 필터링 기법을 활용한 개인화된 상품 추천 방법론 개발에 관한 연구 (A Personalized Recommendation Methodology based on Collaborative Filtering)

  • Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.139-157
    • /
    • 2002
  • 본 연구에서는 기존 협업 필터링의 문제점을 해결할 수 있는 효율적인 상품추천 방법론을 제시하고자 한다. 연구에서 제시하는 상품추천 방법론은 기존 협업 필터링 알고리즘의 데이터 희박성 문제 및 동의어 문제를 극복하기 위하여 판매 데이터로 구성된 제품 계층도(Product Taxonomy)를 이용하며, 이 계층도를 기반으로 한 연관 규칙(association rule)과 의사결정 나무를 사용한다. 본 연구에서는 제시한 방법론을 단계별로 설명하였을 뿐만 아니라, 실제 H 백화점 데이터를 이용하여 적용하였다. 다양한 경우에 대하여 실험을 한 결과, 기존의 협업 필터링 알고리즘이 갖고있는 문제점을 상당히 해결하였음을 제시하였다. 이 연구에서 제시한 상품 추천 방법론은 현재 기업이 직면한 경쟁환경 하에서 고객이 과연 누구이며, 고객이 진정 무엇을 원하고 있는지를 파악하는데 도움을 줄 것이며, 고객관계관리 (CRM)를 효율적으로 구현하는 방법론으로 사용될 것으로 기대된다.

  • PDF

금융 기관을 위한 e-서비스 플랫폼 연구 (A Study on an e-Service Platform for Financial Institutions)

  • 송영효
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 추계공동학술대회
    • /
    • pp.136-160
    • /
    • 2002
  • Most important to financial institutions is to provide well designed and built services to the customers by accessing their core bank systems and affiliated systems in their partners. This will be essential to introduce new products and services and still be able to count on legacy and collaborative affiliated systems. Winning the war on such service competitions among financial institutions is attainable by seizing the "e-bank" opportunities in B2Bi and CRM (Customer Relationship Management). Such application integrations among systems and "e-bank" services need to be available in the new IT environment. In this article, an If and service architecture adopting unified e-business services platform is proposed. This architecture is able to achieve application integrations among legacy, affiliated, and e-business systems and services. We derive an architecture in unified e-business services platform by investigating current and future e-business services platforms involved in domestic and global international banks. Several financial interchange standards which are involved in B2B business of e-procurement, e-placement, e-payment are also investigated.

  • PDF

사례기반추론 기법을 이용한 개인화된 추천시스템 설계 및 구현 (Design and Implementation of personalized recommendation system using Case-based Reasoning Technique)

  • 김영지;문현정;옥수호;우용태
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.1009-1016
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 묵시적인 평가정보를 이용한 새로운 사례기반 추천시스템을 설계하고 구현하였다. 본 시스템은 크게 사용자 프로파일 생성 모듈, 유사도 계산 및 추천 모듈, 개인화된 메일링 모듈로 구성된다. 사용자 프로파일 생성 모듈에서는 사용자가 컨텐츠를 이용하면서 남긴 로그 기록을 이용하여 컨텐츠에 대한 개인별 선호도를 추출할 수 있는 속성내, 속성간 가중치를 제시하였다. 유사도 계산 및 추천 모듈에서는 사용자 프로파일과 새로운 컨텐츠간의 유사도를 측정하기 위한 유사도 계산식을 제시하였다. 개인화된 메일링 모듈에서는 개인별 선호도에 의해 구성된 추천 컨텐츠를 플렛폼-독립적인 XML 문서 형식으로 변환하여 발송한다. 제안된 모델에 대한 추천 효율을 검증하기 위해 평균절대오차(MAE)와 반응자작용특성(ROC) 값을 이용하여 제안한 추천 모델과 협동적 필터링 기법과 비교 실험하였다. 실험결과, 본 논문에서 제안한 모델의 추천 효율이 기존의 협동적 필터링 기법보다 우수함을 보였다.

협업 필터링 기반 개인화에서의 상품군 중립적 사용자 프로파일링 타당성 검토 (Feasibility Study on Cross-Product Category User Profiling in Collaborative Filtering Based Personalization)

  • 김종우;박수환;이홍주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.257-263
    • /
    • 2005
  • 초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.

  • PDF

금융 기관을 위한 e-서비스 플랫폼 연구

  • 송영효
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2002년도 추계공동학술대회 정보환경 변화에 따른 신정보기술 패러다임
    • /
    • pp.136-160
    • /
    • 2002
  • 금융 기관의 통합 플랫폼 도입에 있어서 가장 중요하게 고려해야 될 요소는 웹과 금융 서비스의 연계를 통한 신규 서비스 및 시너지 효과의 창출 가능성이다. 그리고 그 실행요소로서 금융 정보서비스 통합 플랫폼 구축 및 콤포넌트 환경 구현의 가능성 여부이다. 이를 통한 e-business형 새로운 개발과 중복개발의 방지여부도 중요한 플랫폼의 구축 필요성이 된다. 플랫폼 도입을 위하여는, 금융 기관의 통합 플랫폼 및 EAI(Enterprise Application Interface)를 통하여 효율적인 금융 서비스의 구축이 가능한가를 살펴보았다. 그리고 고객과의 접점으로서 중요한 역할을 하는 인터넷이 물류 처리의 임의의 장소나 이동상황에서도 금융 업무처리에 플랫폼과 통합이 가능한가를 또한 이 플랫폼이 금융 업무 전반에 적용 가능하며, 정보 시스템 구축의 근간이 될 수 있는지를 웹 서비스통합화, 어플리케이션 통합화 그리고 금융정보 표준화를 통해 살펴보았다. 본 논문에서는 금융기관 통합 플랫폼에 벤치마킹이 되는 21세기 선진 플랫폼을 살펴보고, 우리나라 금융 플랫폼의 현황을 살펴본 뒤, 상용 통합 금융 플랫폼의 적용방안과 그 표준에 대하여도 살펴보았다.

  • PDF

RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구 (A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis)

  • 이재성;김재영;강병욱
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.139-161
    • /
    • 2019
  • 전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.