LOSA is a flight safety program that analyses human errors in normal operations. Trained pilot observers monitor the normal flights at the observer seat. LOSA is a proactive non jeopardy data collection tool using threat and error management(TEM) as a framework. With the analysis of crew behaviors through LOSA with The LOSA collaborative(TLC), the airlines can identify the behaviors of the crew during normal operations. The major objective of LOSA is to measure how the crew manage threats, errors and undesired aircraft deviations in the cockpit on day to day operations. The airlines are able to set up effective TEM training with practical six generation Crew recourse management(CRM) with data of error from LOSA instead of theoretical CRM courses. The Airlines can use TEM as an integral part of a Safety Management System(SMS) and uses monitoring and cross-checking skills in the flight operations to manage threats and errors effectively when we know the errors we make in the cockpit on daily operation. The result of LOSA indicates that the error detection rate should be enhanced since around the half of the errors went undetected. The areas which should be focused for enhancing the error detection are monitor, cross-check, the management of workload, automation and taxiway/ runway to manage errors effectively.
Location-based advertising or application has been one of the drivers of third-generation mobile operators' marketing efforts in the past few years. As a result, many studies on location-based marketing or advertising have been proposed for recent several years. However, these approaches have two common shortcomings. First. most of them just suggested the theoretical architectures, which were too abstract to apply it to the real-world cases. Second, many of these approaches only consider service provider (seller) rather than customers (buyers). Thus, the prior approaches fit to the automated sales or advertising rather than the implementation of CRM. To mitigate these limitations, this study presents a novel advertisement recommendation model for mobile users. We call our model MAR-CF (Mobile Advertisement Recommender using Collaborative Filtering). Our proposed model is based on traditional CF algorithm, but we adopt the multi-dimensional personalization model to conventional CF for enabling location-based advertising for mobile users. Thus, MAR-CF is designed to make recommendation results for mobile users by considering location, time, and needs type. To validate the usefulness of our recommendation model. we collect the real-world data for mobile advertisements, and perform an empirical validation. Experimental results show that MAR-CF generates more accurate prediction results than other comparative models.
기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.
Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
지능정보연구
/
제8권2호
/
pp.139-157
/
2002
본 연구에서는 기존 협업 필터링의 문제점을 해결할 수 있는 효율적인 상품추천 방법론을 제시하고자 한다. 연구에서 제시하는 상품추천 방법론은 기존 협업 필터링 알고리즘의 데이터 희박성 문제 및 동의어 문제를 극복하기 위하여 판매 데이터로 구성된 제품 계층도(Product Taxonomy)를 이용하며, 이 계층도를 기반으로 한 연관 규칙(association rule)과 의사결정 나무를 사용한다. 본 연구에서는 제시한 방법론을 단계별로 설명하였을 뿐만 아니라, 실제 H 백화점 데이터를 이용하여 적용하였다. 다양한 경우에 대하여 실험을 한 결과, 기존의 협업 필터링 알고리즘이 갖고있는 문제점을 상당히 해결하였음을 제시하였다. 이 연구에서 제시한 상품 추천 방법론은 현재 기업이 직면한 경쟁환경 하에서 고객이 과연 누구이며, 고객이 진정 무엇을 원하고 있는지를 파악하는데 도움을 줄 것이며, 고객관계관리 (CRM)를 효율적으로 구현하는 방법론으로 사용될 것으로 기대된다.
Most important to financial institutions is to provide well designed and built services to the customers by accessing their core bank systems and affiliated systems in their partners. This will be essential to introduce new products and services and still be able to count on legacy and collaborative affiliated systems. Winning the war on such service competitions among financial institutions is attainable by seizing the "e-bank" opportunities in B2Bi and CRM (Customer Relationship Management). Such application integrations among systems and "e-bank" services need to be available in the new IT environment. In this article, an If and service architecture adopting unified e-business services platform is proposed. This architecture is able to achieve application integrations among legacy, affiliated, and e-business systems and services. We derive an architecture in unified e-business services platform by investigating current and future e-business services platforms involved in domestic and global international banks. Several financial interchange standards which are involved in B2B business of e-procurement, e-placement, e-payment are also investigated.
본 논문에서는 인터넷 컨텐츠 사이트에서 묵시적인 평가정보를 이용한 새로운 사례기반 추천시스템을 설계하고 구현하였다. 본 시스템은 크게 사용자 프로파일 생성 모듈, 유사도 계산 및 추천 모듈, 개인화된 메일링 모듈로 구성된다. 사용자 프로파일 생성 모듈에서는 사용자가 컨텐츠를 이용하면서 남긴 로그 기록을 이용하여 컨텐츠에 대한 개인별 선호도를 추출할 수 있는 속성내, 속성간 가중치를 제시하였다. 유사도 계산 및 추천 모듈에서는 사용자 프로파일과 새로운 컨텐츠간의 유사도를 측정하기 위한 유사도 계산식을 제시하였다. 개인화된 메일링 모듈에서는 개인별 선호도에 의해 구성된 추천 컨텐츠를 플렛폼-독립적인 XML 문서 형식으로 변환하여 발송한다. 제안된 모델에 대한 추천 효율을 검증하기 위해 평균절대오차(MAE)와 반응자작용특성(ROC) 값을 이용하여 제안한 추천 모델과 협동적 필터링 기법과 비교 실험하였다. 실험결과, 본 논문에서 제안한 모델의 추천 효율이 기존의 협동적 필터링 기법보다 우수함을 보였다.
초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.
금융 기관의 통합 플랫폼 도입에 있어서 가장 중요하게 고려해야 될 요소는 웹과 금융 서비스의 연계를 통한 신규 서비스 및 시너지 효과의 창출 가능성이다. 그리고 그 실행요소로서 금융 정보서비스 통합 플랫폼 구축 및 콤포넌트 환경 구현의 가능성 여부이다. 이를 통한 e-business형 새로운 개발과 중복개발의 방지여부도 중요한 플랫폼의 구축 필요성이 된다. 플랫폼 도입을 위하여는, 금융 기관의 통합 플랫폼 및 EAI(Enterprise Application Interface)를 통하여 효율적인 금융 서비스의 구축이 가능한가를 살펴보았다. 그리고 고객과의 접점으로서 중요한 역할을 하는 인터넷이 물류 처리의 임의의 장소나 이동상황에서도 금융 업무처리에 플랫폼과 통합이 가능한가를 또한 이 플랫폼이 금융 업무 전반에 적용 가능하며, 정보 시스템 구축의 근간이 될 수 있는지를 웹 서비스통합화, 어플리케이션 통합화 그리고 금융정보 표준화를 통해 살펴보았다. 본 논문에서는 금융기관 통합 플랫폼에 벤치마킹이 되는 21세기 선진 플랫폼을 살펴보고, 우리나라 금융 플랫폼의 현황을 살펴본 뒤, 상용 통합 금융 플랫폼의 적용방안과 그 표준에 대하여도 살펴보았다.
전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.
추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.