• Title/Summary/Keyword: Cold-pressure

Search Result 907, Processing Time 0.022 seconds

Fatigue Crack Growth Characteristics of Cold Stretched STS 304 Welded Joint (콜드 스트레칭 STS 304강 용접부의 저온피로균열진전 특성)

  • Lee, Jeong Won;Na, Seong Hyeon;Yoon, Dong Hyun;Kim, Jae Hoon;Kim, Young Kyun;Kim, Ki Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.809-815
    • /
    • 2017
  • STS 304 steel is used as pressure vessel material, and although it exhibits excellent mechanical characteristics at a low temperature, it is heavier than other materials. To address this issue, a method using cold-stretching techniques for STS 304 can be applied. In this study, a cold-stretching part and welded joint specimen were directly obtained from a cold-stretching pressure vessel manufactured according to ASME code. Fatigue crack propagation tests were carried out at room temperature and $-170^{\circ}C$ using the compliance method for stress ratios of 0.1 and 0.5. The results indicate that crack growth rate of the welded joint is higher than that of the cold-stretching part within the same stress intensity factor range. The outcome of this work is expected to serve as a basis for the development of a cold-stretched STS 304 pressure vessel.

Variation of Cardiac Output and Blood Pleasure after Flooding Water into Lungs (폐 침수시의 심장 박출량과 혈압의 변동)

  • Cho, Sung-Doo;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.57-66
    • /
    • 1967
  • Cold $(0^{\circ}C)$ or warm $(25^{\circ}C)$ fresh and sea water were flooded into the lungs of rabbits through tracheal canule. Respiratory arrest ensued in 19.5 minutes in the warm fresh water flooded rabbits and was the longest survival time among the experimental groups. The survival times in the other groups were: 2.32 minutes in cold fresh water group, 2.75 minutes in .warm sea water group, and 4.57 minutes in cold sea water group. Cardiac output was measured by means of T-1824 dilution technique after 2 or 3 minutes of flooding in 27 rabbits. Blood pressure was observed by mercury manometer throughout the survival time in 40 rabbits. The following results were obtained. 1. Cardiac output in the warm fresh water flooded and sea water flooded animal was smaller than that of control rabbits. In the cold fresh water flooded animal cardiac output was greater than that of the control animal. 2. Time constants of T-1824 dilution curve of experimental group were elongated than the normal curve. 3. Central blood volume showed an increase in the fresh water group, a decrease in cold sea water group and no change in warm sea water group. 4. In all of the experimental groups arterial blood Pressure showed an abrupt and great variations after flooding of lungs and lasted about 30 seconds. Thereafter, arterial pressure remained at a plateau level until the sudden fall to zero and this was almost coincided with the time of respiratory arrest. The Plateau level of arterial Pressure in fresh water group was about 10 mmHg higher than the control value, and it was lower than the control value in warm sea water group. In cold sea water group the plateau was made up by fluctuations around the control value. 5. Osmosis of water through the lung alveolar membrane occured in all animals. Fresh water caused hemodilution and sea water caused hemoconcentration. 6. In sea water flooded animal more volume of water was recovered through the tracheal canule than the volume injected into trachea. This was interpreted as the consequence of the shift of water from plasma to alveolar sac. 7. Relative freight of lung was greater in fresh water group than sea water group. In all animal lung edema ensued. 8. The mechanisms of cardiac output variations were discussed.

  • PDF

An Experimental Study on the Characteristics of Temperature Separation for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브에서의 형상 변화에 따른 온도 분리에 관한 실험적 연구(I))

  • 황승식;전운학;김종철;이희상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.84-93
    • /
    • 2001
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial temperature distribution and the radial temperature distribution in internal space of a tube. From the study, following conclusive remarks can be made. Average flow rate that flows into a tube is in proportion to square root of inlet pressure. As inlet pressure increases axial and radial temperature distribution in the inner space of vortex-tube increase. As mass flow rate ratio change, separation point moves.

  • PDF

Performance test of micronozzle (마이크로 노즐 성능평가)

  • Moon, Seong-Hwan;Oh, Hwa-Young;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.72-78
    • /
    • 2005
  • We conducted the performance test of micronozzle having nozzle throat diameter of 1.0, 0.5, 0.25 mm in an ambient pressure. We used N2 gas as a cold gas propellant. We varied chamber pressure from 2 to 20 bar and measured the thrust and mass flow rate. Through the test, we concluded that viscous losses were increased with decreasing chamber pressure. We found that micronozzle performance was higher than orifice performance through thrust comparison.

Performance Test of Centrifugal Compressor for Microturbine with Running Tip Clearance (운전 익단간극을 고려한 마이크로터빈 코어용 원심압축기의 성능특성 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.7-15
    • /
    • 2005
  • Tip clearance of centrifugal compressor affects the performance. Larger tip clearance results in lower efficiency. What really affects the performance is the running tip clearance, not the cold tip clearance. When the compressor is operating, blade strain and the pressure difference between impeller backplate and hub affects the running tip clearance. This paper describes measured running tip clearance and its effects on the performance of centrifugal compressor. Cold tip clearance before operation was 0.4 mm and running tip clearance varied from 0.86 mm to 0.25 mm with impeller exit pressure. As the pressure at impeller exit increases, the running tip clearance tends to decreases. The target running tip clearance for Compressor at $100\%$ speed was 0.3 mm, and it turned out to be exactly 0.30 mm from experiment.

Mechanical Failures and Design of High Pressure Die Casting Tools (고압 다이캐스팅 툴의 파괴 및 설계)

  • 박용국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.60-66
    • /
    • 1998
  • The horizontal cold chamber pressure die casting produces a variety of net shape, complicate-geometry castings with desired mechanical properties. dimensional tolerance, and surface finish. However, top quality castings can be achieved only when optimal performance of thecold chamber (shot sleeve )and plunger is maintained druing the molten metla injection phase of the process. Unforturately, inreality , shot sleeves deteriorate fast and sometimes fail catastrophically due to incorrect design. These early and unexpected failures of shot sleeves cost die casters money and productiivity. To prevent promature failures of shoe sleeves major faulure mechanisms were investigated. with the aid of analyticla solutions robust design criteria for shot sleeves have been developed. The data directly obtained from failed shot sleeves in the die casting industry for automotive parts, support a strong correlation between design and filures. by applying these design criterial we expected premature faulures of shot sleeves can be avoided in die casting industry.

  • PDF

Performance Test of Centrifugal Compressor for Microturbine with Running Tip Clearance (운전 익단간극을 고려한 마이크로터빈 코어용 원심압축기의 성능특성 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Cha, Bong-Jun;Yang, Soo-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.411-418
    • /
    • 2004
  • Tip clearance of centrifugal compressor affects the performance. Larger tip clearance results in lower efficiency. What really affects the performance is the running tip clearance, not the cold tip clearance. When the compressor is operating, blade strain and the pressure difference between impeller backplate and hub affects the running tip clearance. This paper describes measured running tip clearance and its effects on the performance of centrifugal compressor. Cold tip clearance before operation was 0.4 mm and running tip clearance varied from 0.86 mm to 0.25 mm with impeller exit pressure. As the pressure at impeller exit increases, the routing tip clearance tends to decreases. The target running tip clearance for compressor at $100\%$ speed was 0.3 mm and it turned out to be exactly 0.30 mm from experiment.

  • PDF

ROSA/LSTF test and RELAP5 code analyses on PWR steam generator tube rupture accident with recovery actions

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.981-988
    • /
    • 2018
  • An experiment was performed for the OECD/NEA ROSA-2 Project with the large-scale test facility (LSTF), which simulated a steam generator tube rupture (SGTR) accident due to a double-ended guillotine break of one of steam generator (SG) U-tubes with operator recovery actions in a pressurized water reactor. The relief valve of broken SG opened three times after the start of intact SG secondary-side depressurization as the recovery action. Multi-dimensional phenomena specific to the SGTR accident appeared such as significant thermal stratification in a cold leg in broken loop especially during the operation of high-pressure injection (HPI) system. The RELAP5/MOD3.3 code overpredicted the broken SG secondary-side pressure after the start of the intact SG secondary-side depressurization, and failed to calculate the cold leg fluid temperature in broken loop. The combination of the number of the ruptured SG tubes and the HPI system operation difference was found to significantly affect the primary and SG secondary-side pressures through sensitivity analyses with the RELAP5 code.

Simulation of Transient Flow in a Cold-Water Supply System with Pressure Reducing Valves for Cooling the Inside of a Coal Mining Pit (감압밸브를 사용한 탄광갱내 공조용 냉수 공급시스템의 과도현상 해석)

  • Kang, S.H.;Lee, T.S.;Lee, S.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.395-407
    • /
    • 1988
  • Transient flow in a cold-water supply system for cooling the inside of a coal mining pit was numerically simulated. Properly designed and presetted pressure reducing valves control the level of pressures of the piping system at normal or emergent conditions Quasi-steady relations to simulate the valve motion are obtained and the transient performance of the valve is investigated in the present paper. The present method reasonably simulate transient phenomena in the system including the pressure reducing valve. Excessive valve motion and column separation are simulated when the flow is abruptly reduced. A calculated example of the real system is also presented. The simulation can be used for the safety-check and the guidance for design and operation in emergent cases of the system.

  • PDF

Pressure-Dependent Yield Model for Metallic Powder Mixtures and Their Densification Behavior During Die Compaction as Analyzed by the Finite Element Method (금속분말 혼합체의 압력의존 항복모델과 유한요소법을 이용한 금형압분 공정 시 고형화 해석)

  • Yoon, Seung Chae;Kim, Taek-Soo;Kang, Seung Koo;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.567-572
    • /
    • 2009
  • The densification behaviors of mixtures of copper and steel powders during cold die compaction were investigated. We proposed the pressure-dependent yield function based on the rule of the mixtures of each yield function of a critical relative density type. The constitutive equations were implemented into a finite element program (DEFORM2D) to analyze the densification and deformation behavior of powder mixtures, and the simulated results are in good agreement with the experimental results in reference studies.