• Title/Summary/Keyword: Cold-pressure

Search Result 908, Processing Time 0.028 seconds

A Study on Pressure Vessel using Cold Stretch Method (냉연신 공법을 이용한 압력용기의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2018
  • A pressure vessel consists of an inner tank and the outer tank; the material of the inner tank is austenite stainless steel, and the outer tank is general carbon steel. As the storage amount increase, the size of the inner tank for LNG also increases, which eventually increases the weight of the LNG storage tank. The Cold Stretch method can transport and store the LNG in a larger amount than the conventional pressure container, and the weight of the pressure vessel can also be reduced at 50 70% due to the reduction of the thickness, which is excellent from an economic and energy consumption perspective. Although the Cold Stretch method has these advantages, the domestic situation has not developed any related legislation. In this study, the actual production of pressure vessels using the Cold Stretch method will be processed and the volume expansion after the Cold Stretch will be checked and compared with the mechanical properties.

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

Heat Transfer and Pressure Drop Characteristics of the Cold Plate for an Electric Vehicle (전기자동차용 Cold Plate의 열전달 및 압력손실 특성 연구)

  • Ham, Jin-Ki;Lee, Joon-Yeob;Song, Seok-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1566-1571
    • /
    • 2003
  • The cold plate used for a CEU(Control Electronics Unit) of an EV(Electric Vehicle) is extremely important since the dissipation of the heat generated from power devices like IGBT(Insulated Gate Bipolar Transistor) and diode has a significant effect on the performance as well as the durability of the CED. The cold plate consists of seven power devices, and coolant flows through the passage bonded to a groove of the cold plate. In order to find out heat transfer and pressure drop characteristics, series of numerical analyses for the cold plate with enhanced coolant passages were conducted. Based on results of the numerical analyses, an improved model of the cold plate has been proposed. The experiments under the various conditions have been conducted to compare the performance of the proposed cold plate to the present one. As a result of the numerical analyses together with the experiments, the ideal design of the cold plate could be offered.

  • PDF

Experimental Study on Pressure Welding of Cu and Al at Cold and Warm Temperatures (냉간 및 온간에서의 구리와 알루미늄 압접에 관한 실험적 연구)

  • 심경섭;김용일;장성동;김원술;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.225-228
    • /
    • 2003
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism for the cold and warm clad forming. Bonding characteristics of pressure welding between the copper and aluminum plates are experimentally investigated. Experiments are performed at the cold and warm temperature range with the variation of important factors such as magnitude of pressure, surface roughness of Cu and Al plates, and pressure holding time. It could be concluded that the bonding criterion might be given as a function of bonding pressure and surface roughness for the cold and warm temperature ranges.

  • PDF

Process Conditions for Low Bonding Strength in Pressure Welding of Cu-Al Plates at Cold and Warm Temperatures (Cu-Al 판재의 냉간 및 온간 압접에서 낮은 접합강도를 갖는 공정 조건에 관한 연구)

  • 심경섭;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.623-628
    • /
    • 2004
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism during the cold and warm forming such as clad extrusion or bundle extrusion/drawing. Bonding characteristics between the Cu and Al plates by pressure welding are investigated focusing on the weak bonding. Experiments are performed at the cold and warm temperatures ranging from the room temperature to $200^{\circ}C$. The important factors examined in this work are the welding pressure, pressure holding time, surface roughness, and temperature. A bonding map, which can identify the bonding criterion with a weak bonding strength of IMPa , is proposed in terms of welding pressure and surface roughness fur the cold and warm temperature ranges.

Temperature Separation Characteristics of a Vortex Tube Based on the Back Pressure of the Cold Air Exit (저온 출구의 배압조건에 따른 볼텍스 튜브의 온도분리 특성 연구)

  • Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.166-171
    • /
    • 2016
  • Electric vehicle ownership is expanding for two reasons: its technology features have enhanced fuel economy, and the number of vehicle emissions regulations is increasing. Battery performance has a large influence on the capability of electric vehicles, and even though battery thermal management has been actively researched, specific technological improvements to battery performance are not being presented. For instance, many industrial applications utilize vortex tubes as components for refrigeration machines because of their numerous intrinsic benefits. If electric vehicles incorporate vortex tubes for battery cooling, performance and efficiency advancements are possible. This study uses a counter-flow vortex tube to investigate its temperature separation characteristics, based on the back pressure of the cold air exit and the difference between the inlet and back pressures. The experiment uses a vortex tube with the following parameters: six nozzle holes, a 20 mm inner vortex diameter (D), a 14D tube length, a 0.7D cold exit orifice diameter, and a nozzle area ratio of 0.142. The measurements prove that the temperature difference between the hot air and cold air decreased because of the flow resistance of the hot air and the backflow phenomenon at the cold air exit. The flow resistance causes the temperature difference to decrease, and the back pressure of the cold air exit influences the flow resistance. The results show that the back pressure significantly influences the efficiency of temperature separation.

Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process (냉연 판재의 권취공정에 있어서 장력/열/변형 해석)

  • 정영진;이규택;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

The bonding mechanism and bond strength of cold pressure welding (엡셋팅에 의한 냉간 압접의 결합 기구와 결합강도)

  • 한인철;김재도
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.31-38
    • /
    • 1990
  • The bonding mechanism and bond strength were investigated for the cold pressure welding of Al to Al, Cu to Cu and Al to Cu by upsetting. A phenomenon of bonding betweenthe metallic components has been observed by a scanning electron microscope and metallurgical microscope. A modified equation for bond strength with respect to the reduction of height shows reasonably a good agreement with the experimental data. When the values of the hardening factor and threshold deformation for the given materials could be determined, the theoretical bond strength can be calculated.

  • PDF

Study on the cold pressure welding by upsetting (업셋팅 을 이용한 냉간압접 에 대한 연구)

  • 안기원;김재도
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • The mechanical properties and bonding mechanism of aluminum, copper and mild steel have been determined in cold pressure welding. The brittle cover layer to be established by scratch-brushing plays an important role in bond strength and has an influence on the threshold of deformation. The cold pressure welding was achieved at 54% of height reduction in A1-A1, 75% in Cu-Cu, 56% in Al-Cu, and 74% in Cu-steel. The height reduction at which the bond strength of weld interface was the same as the tensile strength of base metal should be over 76% in Al-Al, 82% in Cu-Cu, and 78% in Al-Cu.

  • PDF

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.