• Title/Summary/Keyword: Cold-Flow Test

Search Result 222, Processing Time 0.027 seconds

Cold Flow and Ignition Tests for Technology Demonstration Model of 75-Tonf Thrust Chamber (75톤급 연소기 기술검증 시제 수류시험 및 점화시험)

  • Kim, Mun-Ki;Han, Yeoung-Min;Kim, Jong-Gyu;Ahn, Kyu-Bok;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Cold flow and ignition tests were performed for a technology demonstration model of a 75-tonf thrust chamber which is a candidate liquid rocket engine for a next Korea Space Launch Vehicle. The test facility was modified to support the new concepts of the thrust chamber such as ignition system, film cooling and LOx leading supply. The hydrodynamic characteristics of the supply pipelines, thrust chamber and igniter as well as the filling time of the propellants were obtained through the cold flow tests on the LOx and kerosene and the ignition cyclogram was determined using the results. The ignition test was successfully accomplished according to the cyclogram and therefore, a basic information was obtained for further hot firing tests.

  • PDF

A Study of the Precise Flow Measurement using Coriolis flowmeter (코리올리 유량계를 이용한 정밀유량측정에 관한 연구)

  • Kim, In-Tae;Cho, Dae-Kee;Jeong, Min-Je;Lee, Jae-Won;Seo, Hyuk;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • For the performance evaluation of liquid mono-propellant thruster, Vacuum Hot-fire test is necessarily required. An accurate flow measurement is one of the key parameters to the successful T&E program. This paper describes the characteristics of the coriolis flowmeter, explains the cold-flow test using simulant propellant (DIW), and presents the test results. Finally, the cold test results have been verified in comparison with the hot-fire test data.

  • PDF

A study on the pintle-tip shapes effect of nozzle flow using cold-flow test (핀틀 형상이 노즐 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Joung-Keun;Park, Jong-Ho;Lee, Jong-Hoon;Jeon, Min-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.985-991
    • /
    • 2010
  • The objective of this work was to investigate the pintle-tip shape effect on nozzle flow and thrust by cold flow test. When nozzle throat area was decreased by pintle movement, chamber pressure was increased monotonously but thrust was increased differently according to every pintle-tip shape. At the same chamber pressure and nozzle throat area, thrust of convex pintle-tip shape was mostly larger than that of concave one. Nozzle wall pressure distribution and magnitude of pintle-tip load depended on the pintle-tip shape, pintle position and nozzle throat area.

Design and Cold Flow Test of a Multi-injector Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신을 이용한 다중 분사기 엔진 설계 및 수류 실험)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2012
  • Multi-injector rocket engine using high-concentrated hydrogen peroxide and kerosene was designed and manufactured. Design requirements of a rocket engine were determined and main geometrical parameters of rocket engine were determined on the basis of fundament. Six coaxial swirl injectors were mounted on the multi-injector engine. Flow analysis in the hydrogen peroxide manifold was performed to minimize stagnation and recirculation zones. Finally, the optimized hydrogen peroxide manifold was manufactured and cold flow test was carried out to confirm mass flow rate per uni-element, spray pattern and atomization characteristics. The results of cold flow test showed that the mixing head design process was successful and enough to use as a essential database for the development of a full-scale engine.

Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test (질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구)

  • Yoo Doc-Koon;Lee Kwang-Jin;Seo Seong-Hyeon;Han Young-Min;Choi Hwan-Seok;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.135-140
    • /
    • 2006
  • In the experimental study of $N_2$ purge cold flow test of impinging(FOOF) injector for determining of instability region, the whistling sound which has a specific frequency is generated. The frequency of whistling is proportional to the gas flow velocity in part of the oxidizer orifice and due to the coupling of the vibrating gas column and the natural frequency of pipe-orifice shape, the discontinuous jumping phenomena arises. The whistling phenomena have no effect on the combustion instability. Compared the damping factor of 1T1L mode with the hot fire test, the instability region of $N_2$ purge cold flow test is very much like that. It means that flow instability by impinging or mixing of jet is the main reason of combustion instability of impinging injector(FOOF) in the hot firing test.

  • PDF

Visualization of Roll Torque Generating Flows in a SRM Submerged-Nozzle by Cold Air-flow Test (내삽노즐 고체로켓모터의 공기 유동모사시험을 통한 롤토크 발생유동 가시화)

  • Kim, Do-Hun;Lee, In-Chul;Lee, Yeol;Koo, Ja-Ye;Kang, Moon-Jung;Kim, Yoon-Gon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • The behaviors of combustion-induced internal flows of SRM equipped with fin-slot grain and submerged nozzle are very complex and diverse. Cold air-flow tests for 2D and 3D scale models of SRM have been done in order to specify the visualization method to analyze particular internal flow patterns such as roll-torque inducing flow. Swirl flow induced by asymmetric vortical tubes also has been visualized through employing various light source and recording directions.

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Low Temperature Fluidity Performance Evaluation of Composited Package Fuel Heater for Diesel Cars (디젤차량용 통합연료히터의 저온유동성 성능평가)

  • Lee, Jeong-Hwa;Park, Hyung-Won;Lee, Woong-Su;Lee, Young-Jea;Lee, Bo-Hee;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.152-158
    • /
    • 2014
  • It is very important to supply the diesel fuel from fuel tank to combustion chamber in case of cold start procedure. the paraffin hydrocarbons are easily solidified at low fuel temperature and it can be blocking the fuel supply to the high pressure fuel pump. In order to reduce the fuel crystallization (Waxing), it have been used to develop not only cold flow additives but also the proper mounting design of fuel filter. Block heater in the fuel filter assembly have been also contained to improve the cold start and prevent blocking the fuel supply in Common Rail Direct Injection System. we can obtain the fuel pressure drop and fuel flow rate, power consumption of fuel heater to have the cold flow evaluation test with the saperated and composited fuel heater at the low ambient temperature, Due to evaluating cold flow performance of two block heater, we knew that composited package fuel heater was the excellent cold flow performance compared to separated type and obtained the parameters of cold flow.

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.