• Title/Summary/Keyword: Cold weld

Search Result 89, Processing Time 0.025 seconds

A Study on the Spot Welding and Fatigue Design of High Strength Steel Sheets for Light Weight Vehicle Body (경량 차체용 고장력 강판의 Spot 용접과 피로설계에 관한 연구)

  • Heo, Jeong-Beom;Bae, Dong-Ho;Yoon, Chi-Sang;Kwon, Soon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1115-1120
    • /
    • 2003
  • The recent tendency in the automobile industries is toward light weighting vehicle body to improve the problems by environmental pollution as well as improving fuel cost. The effective way to reduce the weight of vehicle body seems to be application of new materials for body structure and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheet (for example, 301L and 304L), TRIP steel and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life design criteria of body structure, it is important and require condition to assess spot weldability of them and fatigue strength of spot welded lap joints which were fabricated under optimized spot welding condition. And, recently, a new issue in the design of the spot welded structure is to predict economically fatigue design criterion without additional fatigue tests. In general, for fatigue design of the spot-welded thin sheet structure, additional fatigue tests according to the welding condition, material, joint type, and fatigue loading condition are generally required. This indicates that much cost and time for it should be consumed. Therefore, in this paper, the maximum stresses at nugget edge of spot weld were calculated through nonlinear finite element analysis first. And next, obtained the ${\Delta}P-N_{f}$ relation through the actual fatigue tests on spot welded lap joints of similar and dissimilar high strength steel sheets. And then, the ${\Delta}P-N_{f}$ relation was rearranged in the ${\Delta}{\sigma}-N_{f}$ relation. From this ${\Delta}{\sigma}-N_{f}$ relation, developed the fatigue design technology for spot welded lap joints of them welded using the optimized welding conditions.

  • PDF

Structural Characteristics of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조특성)

  • Lee, Seong Hui;Jung, Hun Mo;Kim, Dae Jung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.711-722
    • /
    • 2008
  • Existing tube for concrete filled tubular structure is made through welding of four plates irrespective of tube thickness, so production performance is poor and special welding technique is needed to weld the internal diaphragm and through the diaphragm. Therefore, through manufacturing by cold forming development of beam to column connections that is no welding in position of stress concentration is needed. In this study the proposal of beam to column connections details and to making tube specimens by method of bending steel plates, we want to know the compositeeffect between internal anchor and concrete by processing on stress distribution and internal force evaluation of concrete filled tube beam to column connections with a variable of flange welding existence between column and beam, welding quantity between column and diaphragm, existence of concrete in tube, column with diaphragm and general column.

Effects of Chemical Compositions on Cold Cracking of Steel Weldments (전기아연 도금강판에서 단상 AC와 인버터 DC 용접기의저항 점용접 연속타점 수명 평가)

  • Son, Jong-Woo;Park, Yeong-Do;Kang, Mun-Jin;Kim, Dong-Cheol
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.118-118
    • /
    • 2009
  • 자동차의 경량화, 안전성 그리고 내식성 향상을 위하여 고강도 강판 및 도금 강판의 적용이 증가하면서 자동차 산업의 많은 부분에서 적용되는 저항 점용접에서도 고강도 강판과 도금강판의 적용이 증가하는 추세이다. 이에 따라 고강도 강판과 도금 강판의 낮은 용접성을 개선하기 위하여 기존의 단상 AC 용접기에서 전류 파형의 형태를 개선한 인버터 DC 용접기가 차체 조립라인에서 많이 사용되고 있다. 본 연구에서는 고강도 강판의 저항 점용접의 연속타점 시 단상 AC용접기와 인버터 DC용접기의 전극의 연속타점 수명의 차이를 비교하고 분석하기 위해 590MPa 급 전기아연도금강판을 이용하여 AWS 규격에 연속타점실험을 기준으로 단상 AC 와 인버터 DC 용접기의 연속타점 실험을 실시하였다. 연속타점실험 중에 전극의 형상관찰을 위해 100타점 간격으로 carbon paper를 이용해 전극 직경 변화를 관찰 하였으며, 100 타점간격으로 동저항을 측정하고 인장 전단 시편과 Peel test 시편을 제작하여 연속타점 시 단상 AC와 인버터 DC 용접기의 저항 점용접 연속타점 수명을 비교 분석하였다. 그리고 연속타점 실험 후 사용된 전극의 표면과 단면 형상을 각각 OM, SEM, EDX로 분석하여 전극 표면의 Zn과 합금화 된 전극의 합금층을 분석하였다. 그 결과 590MPa급 전기아연도금강판의 저항 점용점 연속타점 수명평가에서 인버터 DC 용접기가 단상 AC 용접기보다 200타점 더 우수한 연속타점 수명을 보유하였다. 특히 인장강도 기준 측면에서는 인버터 DC 용접기의 전극 연속타점수명은 매우 우수하다.

  • PDF

A Study on Fatigue Fracture Behavior of Laser Beam Welding and Steel with Different Materials ($CO_2$ 레이저 용접 이종재료강의 피로파괴거동에 관한 연구)

  • Han, M.S.;Suh, J.;Lee, J.H.;Kim, J.O.;Jeon, S.M.
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range $({\Delta}K)$ region and faster in high${\Delta}K$ region than that of the base metal specimens. The slant crack angle slightly influenced the crack propagation of the TB specimen of 2.0+2.0mm thinkness.

  • PDF

Structural Behavior of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm (용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조 거동)

  • Lee, Seong Hui;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Existing tubes for concrete filled tubular structure are made through welding of four plates irrespective, but the production performance is poor and special welding technique is needed to weld the internal or through diaphragm. Accordingly, We developed a welded built-up square steel tube having a welding lines and a stiffeners at location out of stress concentration. The welded built-up square steel tube occurred a interference with stiffeners at the internal or through diaphragm, therefore researches of a external diaphragm for welded built-up square CFT column connections are needed for the purpose of avoidance of a interfere with stiffeners. In this study we suggest a design formulation for external diaphragm of the welded built-up square CFT external diaphragm connections. Four specimens were manufactured for a experimental test, then we analyzed the behaviors of the specimens.

A Prediction of the Penetration Depth on CO2 Arc Welding of Steel Sheet Lap Joint with Fillet for Car Body using Multiple Regression Analysis Technique (자동차용 박강판 겹치기 이음부의 CO2 아크 용접에서 다중회귀분석기법을 이용한 용입깊이 예측에 대한 연구)

  • Lee, Kyung-Min;Sim, Hyun-Woo;Kwon, Jae-Hyung;Yoon, Buk-Dong;Jeong, Min-Ki;Park, Moon-Soo;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.59-64
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body are spot welding and $CO_2$ welding are used in a small part. In production field, $CO_2$ welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ welding process frequently. But $CO_2$ welding process should be used at robot interference parts and closed parts where spot welding couldn't. Because of the 0.65mm ~ 2.0mm thickness steel sheet were used in the automotive industry, poor quality of welding area such as burn through and under fill were happened frequently in $CO_2$ process. In this paper, we will study about the penetration depth which gives a huge impact on burn through changing a degree of base metal, welding position and torch angle. Voltage, current and welding speed were fixed but degree of base metal, welding position and torch angle were changed. And Cold- Rolled(CR) steel sheet was used. Penetration depth was analysed by multiple regression analysis to derive approximate calculations. And reliability of approximate calculations were confirmed through additional experiments. As the results of this research, we confirmed the effect of torch and plate angle to bead shape. And we present a possibility that can simulate more accurate to weld geometry, as deduced the verification equations that has tolerance of less than 21.69%.

Experimental Study on Steel Beam with Embossment Web (엠보싱 웨브를 가지는 보 부재의 실험적 연구)

  • Park, Han-Min;Lee, Hee-Du;Shin, Kyung-Jae;Lee, Swoo-Heon;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.479-486
    • /
    • 2017
  • Steel beams with corrugated web have been widely used in the steel structures. However, it is challenging to weld the section between the corrugated web and the flange straight, which increases the cost of production. In order to solve this issue, steel beam with intaglio and embossed web (It is called an IEB) was invented. A web with embossment is produced by cold pressing and welded to flange by automatic welding machine. The loading tests were conducted to investigate the load-carrying capacity of IEB, and its test result was compared with that of H-shaped beam having a same size of flange and web. The test results of IEB series showed about 40% higher load capacities than H-shaped series. As a result of comparing the IEB specimen with Eurocodes for steel beams with corrugated web, all of specimens tested in this study did not meet the design value. Therefore, it is difficult to apply existing formula to IEB and new design formula should be presented for field application.

Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress (잔류응력을 고려한 압연강 용접구조물의 X-ray 회절법에 의한 파괴 역학적 고찰)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1179-1185
    • /
    • 2011
  • Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ${\Delta}P-N_f$ relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints.

Mechanical Properties of Laser-Welded Multi-Material Tailor-Welded Blanks (레이저 TWB된 이종접합강의 기계적 특성)

  • Nam, Ki-Woo;Park, Sang-Hyun;Lee, Kyu-Hyun;Lee, Mun-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.857-863
    • /
    • 2012
  • In this study, tailor-welded blanks(TWB) were formed between high-strength steel(SABC1470) and cold rolled steels(SPFH590 and SPFC980) to improve passenger safety and reduce the weight of cars. Multi-material TWB specimens were highly strengthened through the heat treatment of SABC1470. The change in tensile strength caused by the stand-by time until water cooling after stamping and the deformation behavior of high-speed bending in a statically indeterminate condition such as in the center-pillar were evaluated. Multi-material TWB specimens that were heat-treated at the same temperature tended to show a decrease in tensile and yield strength, depending on the stand-by time until water cooling. On the other hand, Multi-material TWB specimens(SABC1470+SPFH590) that were heat treated at $850^{\circ}C$ showed good properties that were suitable for ensuring passenger safety in car accidents. From the viewpoint of passenger safety, it is best to use SABC1470 and SPFH590 in the upper and lower area of the center-pillar, respectively.