• Title/Summary/Keyword: Cold flow

Search Result 1,090, Processing Time 0.031 seconds

A Study on the Acute Effects of Eine Particles on Pulmonary Function of Schoolchildren in Beijing, China (봄철 미세분진이 북경시 아동 폐기능에 미치는 급성영향에 관한 연구)

  • 김대선;유승도;차정훈;안승철;차준석
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.140-148
    • /
    • 2004
  • To evaluate the acute effects of fine particles on pulmonary function, a longitudinal study was conducted. This study was carried out for the schoolchildren (3rd and 6th grades) living in Beijing, China. Each child was provided with a mini-Wright peak flow meter and a preformatted health symptom diary for 40 days, and was trained on their proper use. Participants were instructed to perform the peak flow test three times in standing position, three times a day (9 am, 12 pm, and 8 pm), and to record all the readings along with the symptoms (cold, cough, and asthmatic symptoms) experienced on that day. Daily measurement of fine particles (PM$_{10}$ and PM$_{2.5}$) was obtained in the comer of the playground of the participating elementary school for the same period of this longitudinal study. The relationship between daily peak expiratory flow rate (PEFR) and fine particle levels was analyzed using a mixed linear regression models including gender, height, the presence of respiratory symptoms, and daily average temperature and relative humidity as extraneous variables. The total number of students participating in this longitudinal study was 87. The range of daily measured PEFR was 253-501$\ell$/min. In general, the PEFR measured in the morning was lower than the PEFR measured in the evening (or afternoon) on the same day. The daily mean concentrations of PM$_{10}$ and PM$_{2.5}$ over the study period were 180.2$\mu\textrm{g}$/㎥ and 103.2$\mu\textrm{g}$/㎥, respectively. The IQR (inter-quartile range) of PM$_{10}$ and PM$_{2.5}$ were 91.8$\mu\textrm{g}$/㎥ and 58.0$\mu\textrm{g}$/㎥. During the study period, the national ambient air quality standard of 150$\mu\textrm{g}$/㎥ (for PM$_{10}$) was exceeded in 23 days (57.5%). The analysis showed that an increase of 1$\mu\textrm{g}$/㎥ of PM$_{10}$ corresponded to 0.59$\mu\textrm{g}$/㎥ increment of PM$_{2.5}$. Daily mean PEFR was regressed with the 24-hour average PM$_{10}$ (or PM$_{2.5}$) levels, weather information such as air temperature and relative humidity, and individual characteristics including gender, height, and respiratory symptoms. The analysis showed that the increase of fine particle concentrations was negatively associated with the variability in PEFR. The IQR increments of PM$_{10}$ or PM$_{2.5}$ (at 1-day time lag) were also shown to be related with 1.54 $\ell$/min (95% Confidence intervals: 0.94-2.14) and 1.56$\ell$/min (95% CI: 0.95-2.16) decline in PEFR.R.ine in PEFR.ine in PEFR.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

Rocket Engine Test Facility Improvement for Hot firing test of a Combustor in the 30-tonf class (30톤급 연소기의 연소시험을 위한 설비 개량)

  • Lee Kwang-Jin;Seo Seonghyeon;Lim Byoungjik;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.313-317
    • /
    • 2005
  • The facility improvement for hot firing test of combustion chamber having thrust of 30-tonf class and chamber pressure of 60bara were performed at ReTF in KARI. The KSR-III main engine having combustion pressure of 13bara and thrust of 12.5tonf had been successfully tested in this facility. To increase the capability of the facility, the feeding and the trust measurement system have been modified. The modification of the feeding system plays also a role of ensuring the stability of propellant supply and two step ignition sequence of combustion chamber. The one-axis thrust measurement system of up to 60tons has been newly manufactured and installed in test stand and the water/kerosene supply lines with high pressure vessel of $4m^3$ and gas nitrogen vessel of $10m^3$ have been designed for regenerative cooling system. The results of cold flow test show that this facility has been successfully improved to satisfy the requirement for hot firing test of high performance combustor.

  • PDF

Thermal Analysis of a Film Cooling System with Normal Injection Holes Using Experimental Data

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The present study investigated temperature and thermal stress distributions in a film cooling system with normal injection cooling flow. 3D-numerical simulations using the FEM commercial code ANSYS were conducted to calculate distributions of temperature and thermal stresses. In the simulations, the surface boundary conditions used the surface heat transfer coefficients and adiabatic wall temperature which were converted from the Sherwood numbers and impermeable wall effectiveness obtained from previous mass transfer experiments. As a result, the temperature gradients, in contrast to the adiabatic wall temperature, were generated by conduction between the hot and cold regions in the film cooling system. The gradient magnitudes were about 10~20K in the y-axis (spanwise) direction and about 50~60K in the x-axis (streamwise) direction. The high thermal stresses resulting from this temperature distribution appeared in the side regions of holes. These locations were similar to those of thermal cracks in actual gas turbines. Thus, this thermal analysis can apply to a thermal design of film cooling holes to prevent or reduce thermal stresses.

Numerical Study on Slanted Cubical-Cavity Natural Convection (경사진 3차원 캐비티내 자연대류현상에 관한 수치적 연구)

  • Myong, Hyon-Kook;Kim, Jong-Eun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.722-728
    • /
    • 2006
  • Natural convection flows in a cubical air-filled slanted cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;toT_h$ are numerically simulated by a solution code (PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to a new orientation (diamond type) for the cubical-cavity benchmark problem in natural convection. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled slanted cavity with differentially heated walls.

The Experimental Study on the Performance of Two-Phase Loop Thermosyphone System for Electronic Equipment Cooling (전자장비 냉각을 위한 2상 순환형 써모사이폰 시스템의 성능에 대한 실험적 연구)

  • Kang, In-Seak;Choi, Dong-Kyu;Kim, Taig-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2004
  • Cooling the electronic equipment is one of the major focal points of the design process and the key to successful product launch. The two-phase loop thermosyphone which is a good candidate among many available options was investigated fur cooling of the high power amplifiers. The system is composed of evaporator which contains 6 parallel cold plates, fan cooled condenser, gas-liquid separator, and interconnecting tubes. Experiments were performed for several refrigerant charging values, hs and as a experiment result, the optimum charging value fur this system was proposed. In order to optimize the system design, the operating cycle pressure and inlet/outlet temperatures of evaporator and condenser are measured and analyzed. The effect of the three parameters such as flow rate and temperature of condenser cooling air, and thermal load on the evaporator are investigated. The lower the operating pressure and the cycle temperatures are also better to prevent the leakage of the system. The system invesigated in this paper can be directly used for cooling of a real unmanned wireless communication station.

A Study on the Backward Extrusion of Internal Spline (내부 스플라인의 후방압출에 관한 연구)

  • Cho, YongIl;Choi, JongUng;Qiu, Yuangen;Cho, Heayong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.