• 제목/요약/키워드: Cold flow

검색결과 1,090건 처리시간 0.03초

냉간 비조질강의 바우싱거 효과에 미치는 변형량의 영향 (Pre-strain Effect on the Bauschinger Phenomenon of Non-Heat Treatable Cold Forging Steel)

  • 하재근;권용남;김상우;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2005
  • Since the required strength of forged part is achieved by work hardening with the accumulation of plastic strain during the cold working, severe load can be exerted on die system. So, dies are liable to the early fracture for the non-heat treated steel forging in comparison with the conventional mild steels. Therefore, it is necessary to lower the flow stress of steels as much as possible during forging steps. Bauschinger effect can be utilized to lower flow stress during forging steps by giving the tensile prestrain on the forging billet during wire drawing step. In the present study, the prestrain effect on Bauschinger phenomenon is studied to avoid difficulties with application of non-heat treated cold forging steels in practice.

  • PDF

발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션 (The Simulation about the Air Flow and Pressure Drop inside the Metal Foam)

  • 김필환;김미화;장석준;정한식;정효민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.

주거건물의 급탕방식별 급수.급탕헤더시스템 적용방안에 관한 연구 (A Study on the Application Method of Cold & Hot Water Manifold System for Hot Water Supply System in Residential Buildings)

  • 차민철;제성호;석호태
    • 한국주거학회논문집
    • /
    • 제19권1호
    • /
    • pp.79-88
    • /
    • 2008
  • Hot water is used by having a wash, dishes, taking tub and drinking water in residential buildings, and the use objective is to raise comfort of human body sense, washing and sterilization effect and so on. Cold & hot water supply system is understanded simpler than HVAC systems relatively, so it is true that pace of performance improvement is slower than other systems for plan and technical development. In this study, the performance evaluations are conducted under the condition of composition ratio by 1:1 for cold & hot water supply manifold system using functionally complex valves such as constant flow regulating valve and 3-way mixing valve in the area of $105.6m^2$ apartment which consist of the largest part of the whole apartment. Also, flow rate related to simultaneous use of faucets and change of hot water temperature are compared with the existing method.

유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계 (Process Design of Cold Forged Hub by Flow Control Forming Technique)

  • 박종남;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

전단동축형 분사기들의 미립화 특성에 대한 연구 (Study on Atomization Characteristics of Shear Coaxial Injectors)

  • 안종현;이근석;안규복
    • 한국분무공학회지
    • /
    • 제26권1호
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

초고압 가스차단부의 냉가스 유동해석 (An Analysis of Cold Gas Flow-Field for UHV Class Interrupters)

  • 송기동;박경엽;송원표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권6호
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF

코리올리 유량계를 이용한 정밀유량측정에 관한 연구 (A Study of the Precise Flow Measurement using Coriolis flowmeter)

  • 김인태;조대기;정민제;이재원;서혁;유명종
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • 액체추진제 추력기의 경우, 성능평가를 위해 진공연소시험이 필수적으로 요구되며 이때 공급되는 추진제의 유량이 비추력 계산시 중요한 영향을 미치는 인자가 된다. 본 논문에서는 정밀 유량측정에 대한 기초연구로서, 코리올리 유량계를 이용하여 모의추진제인 DIW를 사용한 수류시험을 수행하였으며 연속모드 및 펄스모드 각각에 대해 결과분석이 이루어졌다. 마지막으로 해외연소시험 데이터와의 비교를 통해 수류시험 결과와의 검증을 확인하였다.

  • PDF

하이브리드법을 이용한 열전냉각의 수치해석 연구 (Computer Simulation Study of the Thermoelectric Cooling by Hybrid Method)

  • 김남진;이재용;김종보
    • 태양에너지
    • /
    • 제20권1호
    • /
    • pp.97-108
    • /
    • 2000
  • The purpose of this study is to minimize the heat transfer surface area and cold fluid exit temperature of heat exchanger which applied to the refrigeration and air-conditioning system by utilizing the thermoelectric principle. Both uniform and non-uniform current distribution methods which applied to the analysis of the TE elements that incorporates heat exchanger were investigated. The non-uniform current distribution method had the better coefficient of performance and had the lower cold fluid exit temperature of the TE cooling system than the uniform current distribution method. It was found that if a TE cooling system incorporates a heat exchanger, a non-uniform current distribution should guarantee to the lowest cold fluid exit temperature. Also, the hybrid method (combination of the uniform and non-uniform current distribution method) is investigated to achieve the best results by combining the uniform and non-uniform current distributions. The results show that it can lower the cold fluid exit temperature and reduce the heat transfer surface area for the parallel flow arrangement if we apply the constant current in some entry region and the non-uniform increasing current in the direction of the cold fluid flow afterwards.

  • PDF