• Title/Summary/Keyword: Cold extrusion process

Search Result 99, Processing Time 0.022 seconds

Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control (유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Byung-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming (배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구)

  • Kwon, Y.C.;Lee, J.H.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

Determination of Elastic Recovery for Axi-Symmetric Forged Products (축대칭 단조공정에서 최종제품의 탄성회복에 관한 해석)

  • Kim, T.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.165-173
    • /
    • 1996
  • The dimensional accuracy of a final product is mainly affected by elastic die deformation during the forging and elastic recovery after the ejection in cold forging process. The investigations on elastic recovery are not so much as those of elastic die deformation. The elastic recovery can be determined by using the elastic-plalstic finite element analysis, but, this method has some limits such as poor conver- gence and long computational time, etc. In this paper, a theoretical analysis for predicting the elastic recovery of a final product in axi-symmetric forging process by using the rigid-plastic finite element method is presented. The rigid-plastic finite element analysis of a cold forward extrusion process involving loading, ejecting process is accomplished by rigid-plastic FE code, DEFORM. The effect of elastic die deformation on the final product dimenmsion is also considered. The calculated elastic recovery is compared is compared with the analysis result of elastic-plastic FE code. ABAQUS.

  • PDF

A Study on the Manufacturing of Die and Improvement of Process in Fiorging Work of Alternator Rotor Pole (앨터네이터 로터폴의 단조가공에서 공전개선과 금형제작에 관한 연구)

  • 김세환
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.54-61
    • /
    • 1997
  • Furthermore the rothor pole, with a solid type, manufactured by cold forging process at present should dmploy 3 press lines which consist of total 7 processes. Since A.S.B. treatment is prerequisite for the press line, the 3 times of A.S.B. treatment requires a long lead time, with little contribution to the reduction in cost. The author has investigated, through this researach, the possibility of a new forging method for a rotor pole production with (1) 2 pass instead of 3 press lines (2) only one A.S.B. treatment instead of 3 ones (3) solid type instead of sectional type, and (4) improvment of material property during process using a modified forging process and a specially designed die.

  • PDF

The Influence of Surface Roughness on Slice Interval Adjustment at FDM (FDM에서 SLICE INTERVAL이 시작품의 표면에 미치는 영향)

  • 하만경;전재억
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.68-74
    • /
    • 2002
  • The FD process is analogous to the direct piston extrusion process where the cold feed filament acts as a piston extruding the molten filament from the heated liquefier through a nozzle. The extruded filament is deposited on top of futureless platform, where the liquefier and the nozzle move in X and Y direction control by computer based on the part geometry. After the first layer, the Z platform indexes down and the next layer get deposited on top of the first layer. the layer by layer building process introduces surface problem. This paper describes effect of slice interval of the parts built by fused deposition modelling rapid prototyping system.

Finite element analysis of forging for spring cup of engine valve (엔진 벨브 스프링 컵 단조의 유한요소해석)

  • Lee, In-Hwan;Cho, Hae-Yong;Song, Hong-Ki;Kim, Ji-Hoon;Seo, Bo-Hyuck;Kyoung, Ki-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1361-1366
    • /
    • 2007
  • Forging for spring cup of engine valve was investigated in this study. New method is needed to reduce cost and development lead time required to fix forming process of new product, that eventually can provide die, metal flow and forming loads with high confidence level. FEM could provide required detail information that could reduce trial error in advance before the actual production. By using the rigid-plastic finite element simulation, possibilities of improving former research were explored. Results generated by FEM could foresee expected material deformation in advance and made possible new forming process successfully.

  • PDF

FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill (유성압연기를 사용한 동관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Han, Ki-Beom;Kim, Kwan-Woo;Choe, Jong-Woong;Kim, Jae-Hun;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.303-309
    • /
    • 2010
  • Copper tube rolling process using the planetary rolling mill has been studied by using finite element method. This rolling is process that makes copper tube by three-roll with mannesmann method. Also, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in copper tube rolling. Rolling process for copper tube was successfully simulated and it should be useful to determine optimal rolling condition.

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.

Die Surface Texturing by Femtosecond Laser for Friction Reduction (펨토초레이저를 이용한 알루미늄 성형다이의 미세가공에 관한 연구)

  • Choi, Hae-Woon;Shin, Hyun-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.57-63
    • /
    • 2009
  • Interface friction in blanking dies, cold forging and extrusion of aluminum alloys is a major cause of inefficient process. This paper describes an investigation of femtosecond laser texturing for reduction of interface friction on sliding surfaces in forming process. Femtosecond direct writing technology was used to fabricate a laser micro-machined die and to create microgroove patterns with varying size and density on metal forming dies. A systematic approach to find the optimum parameters and computer simulation comparison of friction coefficients are provided to study the relation of friction coefficients and die profiles. In metal forming tests, the effectiveness of various laser-machined patterns for enhancing interface lubrication is determined.

Development of Expert System for Cold Forging of Axisymmetric Product - Horizontal Split and Optimal Design of Multi-former Die Set - (준축대칭 제품 냉간단조용 전문가시스템 개발 - 다단포머 금형의 수평분할 밀 최적설계 -)

  • Park, Chul-Woo;Cho, Chun-Soo;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.32-40
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of four main modules. The process planning and the die design modules consider several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available multi former, and the availability of standard parts. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.