• 제목/요약/키워드: Cold Forming Process

검색결과 238건 처리시간 0.049초

숏넥 플랜지의 공정설계에 관한 연구 (A Study on the Process Sequence Design of a Short-Neck Flange)

  • 장용석;최진화;고병두;이호용;황병복
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.127-134
    • /
    • 2000
  • The current three-stage cold farming process to produce a flange is investigated for the purpose of improvement of manufacturing process. The main goal of this study is to obtain an appropriate process sequence, which can produce the required part with less manufacturing cost. The current process sequence is simulated using finite element method and design criteria are examined. Based on the results of simulation of the current three-stage process. a design strategy for improving the process sequence is analyzed using the thick-walled pipes. Because it has a reduced process-sequence without buckling of the workpiece or overloading of tools, the new process has distinct advantages over the conventional process. Numerical results show that the newly proposed process with selected presses is the most economical way to produce the required part.

  • PDF

단조 베벨 기어의 탄성회복과 금형변형에 관한 연구 (A Study on the Elastic Deformation of Forged Bevel Gears and Die)

  • 김명곤;강우진;조종래;이정환;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.34-37
    • /
    • 2003
  • Cold forging has several advantages as compared with conventional forming by cutting process. In this study, the elastic deformations of straight bevel gear and die induced by cold forging process are investigated to use 3D-Scanner. So we could estimate the total elastic deformation as comparing between forged bevel gears and die. And finite element analysis has been performed to predict the elastic deformation, each of cold forged bevel gear and die. The predicted values are compared with the experimental values and as a result they are well agreed with experimental data.

  • PDF

1-Piece 알루미늄 도어 인너 냉간-열간 복합 성형공정 개발 (Development of the Hybrid Cold-Hot Stamping Process for the 1-Piece Aluminum Door Inner Part)

  • 남성우;배기현
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.242-246
    • /
    • 2021
  • Aluminum alloy sheet is being applied to automobiles continuously for the purpose of reducing car body weight. However, due to low formability, there's a limit to application of products with a deep forming depth such as door inner parts. Therefore, the difficult-to-form parts are mainly segmented formed then joined together, which is also disadvantageous as it increases the cost of manufacturing. This study proposes a hybrid cold-hot stamping method for the 1-piece door inner part to reduce cost. To design the stamping process, numerical simulation method is established by using the temperature-dependent mechanical properties of AA6016. The formability according to the hybrid cold-hot stamping method is evaluated using numerical analysis. The suitability of the proposed stamping method is then verified through the stamping tryout.

엔진 벨브 스프링 컵 단조의 유한요소해석 (Finite element analysis of forging for spring cup of engine valve)

  • 이인환;조해용;송홍기;김지훈;서보혁;경기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1361-1366
    • /
    • 2007
  • Forging for spring cup of engine valve was investigated in this study. New method is needed to reduce cost and development lead time required to fix forming process of new product, that eventually can provide die, metal flow and forming loads with high confidence level. FEM could provide required detail information that could reduce trial error in advance before the actual production. By using the rigid-plastic finite element simulation, possibilities of improving former research were explored. Results generated by FEM could foresee expected material deformation in advance and made possible new forming process successfully.

  • PDF

유한요소 시뮬레이션을 이용한 알루미늄 7075 복합 압출재에 대한 공정개선 연구 (A Study on Process Improvement of Combined Extrusion with Aluminum Alloy 7075)

  • 김진복;이지억;강범수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1996년도 제6회 학술강연회논문집
    • /
    • pp.197-205
    • /
    • 1996
  • A combined extrusion process studied here consists of forward and backward extrusion, and it is formed in single operation. The metal flow involved in the operation has appeared to be difficult to analyze accurately because of mixed directions of the flow. In this study, conventional two operations of a forward and a backward extrusions is transformed into one operation of mixed extrusion. A process designed by an industry expert is simulated by the rigid-plastic finite element method to investigate the metal flow and defects. In addition to the FEM simulation, experimental analysis has been carried out to confirm the design in industry, which includes material characterization, preliminary expriment, and whole experimental forming operation. The experimental results show that warm forming of extrusion is more desirable than cold working and hot forming in view of grain growth. Also two conditions of lubrication between workpiece and die has been investigated.

  • PDF

자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발 (Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile)

  • 박기근;문호근;오상균;전만수
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

${\cdot}$후방 압출 제품의 유동 결함에 관한 연구 (The study on the flow defect of cold combined forward-backward extrusion product)

  • 황상홍;이동주;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.79-82
    • /
    • 1999
  • This paper presents a study of cold combined forward-backward extrusion product. The case of product with thin wall in piercing process occur defects of deformation and breakdown during piercing process and the center web of product with thin thickness cause flow defect. Such defect is made by the difference of material flow. Methods of the material flow control in the two directions and forming process to remove this flow defect is proposed. The effectiveness of the proposed methods is examined by comparison experiment and finite element simulation.

  • PDF

내부 스플라인의 후방압출에 관한 연구 (A Study on the Backward Extrusion of Internal Spline)

  • 조용일;최종웅;추연근;조해용
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.15-23
    • /
    • 2020
  • Spline is a machine component using transmits rotating energy with grooves on internal of boss and external periphery of shaft. Internal spline is generally produced by machining process. However, to reduce manufacturing cost and save time, plastic deformation process such as backward extrusion is gradually adapted for spline production. In plastic deformation process, forming load, stress on tools and flow flaws should be taken into account to have sound products. For this purpose, kinematically admissible velocity fields for Upper Bound Method in backward extrusion of internal spline has been suggested, then forming load and relative pressure have been calculated. Internal spline forming experiments have been con-ucted under hydraulic press and the calculated forming load well predicts the load of experiment.

자동차용 알루미늄 합금 정형의 스탬핑 부품 성형을 위한 CAE 기법 개발 (A CAE Approach for Net-Shape Automobile Stamping Components of Aluminum Alloy)

  • 최한호;구태완;황상문;강범수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.164-171
    • /
    • 1999
  • An optimum blank design technology is required for near-net of net-shape cold forming using sheets. Originally, the backward tracing scheme has been developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform of initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. Another general application appears in the blank design of a cup stamping with protruding flanges, one of typical automobile components. The blank configurations derived by backward tracing simulation have been confirmed by a series of loading simulations. The approach or decision of an initial blank configuration presented in this study will be a milestone in fields of sheet forming process design.

  • PDF