• Title/Summary/Keyword: Cold Drawing Process

Search Result 56, Processing Time 0.027 seconds

A Study on the Method of Residual Stress Relaxation during Wire Drawing and Evaluation of Residual Stress Using Nano Indentation Test (신선 시 선재의 잔류응력 완화 방법에 관한 연구 및 나노 압입 시험을 이용한 잔류응력 평가)

  • Ko Dae-Cheol;Hwang Won-Ho;Lee Sang-Kon;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.162-169
    • /
    • 2006
  • Steel cord which is used as reinforcement in car tires is produced by wet-drawing process. Recently the quality improvement of the steel cord product is demanded by the tire market. After cold drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the cold drawn wire, it is very important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the cold drawn wire. The aim of this study is to propose residual stress relaxation method in the drawn wire using FE-analysis. The validity of the analysis results was verified by Nano indentation test.

Development of Program for the Intermediate ie Design in the Drawing of the Rectangular Rod (직사각재 인발 공정의 중간 금형 설계 프로그램 개발)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.95-98
    • /
    • 1999
  • In this study, a method to find the optimal intermediate die geometry for the multi-stage drawing process for the rectangular rod from a round bar is proposed and a program using the proposed method is developed. On the stage of the design of the intermediate die geometry, the virtual die was constructed using the initial billet as a inlet of the drawing die and the final product as a exit of that and the virtual die was divided by the number of pass. Divided die was transformed into the rectangular one which is the intermediate die geometry for the multi-stage rectangular drawing process. In order to verify the application of the proposed method on the real industrial product, the drawing of the rectangular rod from a round which composed two stage has been performed and simulated by the three dimensional rigid plastic finite element method.

  • PDF

Combination of Deep Drawing and Forging Process for Forming Drum Shape Product Having Thickness Variation (두께 분포를 갖는 드럼 형상 제품의 성형을 위한 Deep Drawing과 단조 공정의 조합)

  • Cha D. J.;Kim S. S.;Byun W. Y.;Kang S. W.;Kim E. Z.;Park H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.439-443
    • /
    • 2005
  • Deep drawing and cold forging processes are combined to achieve near net shape forming of automotive part which has not only drum shape but also thickness variation. It is important to find out proper intermediate shape where two totally different forming methods should be joined seamlessly. In the course of development of the combined process, finite element analysis can be utilized effectively to decide optimal position for transferring from the sheet metal work to the bulk forming. Because machining process is eliminated, significant improvement in integrity, reliability, and durability of the part is expected. The developed process combination could be applied in real manufacturing process successfully.

Combination of deep drawing and forging process for forming drum-shaped-product to have thickness variation (두께 분포를 갖는 드럼 형상 제품의 성형을 위한 deep drawing과 단조 공정의 조합)

  • Cha D. J.;Kim S. S.;Byun W. Y.;Kang S. W.;Kim E. Z.;Park H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.342-345
    • /
    • 2004
  • A combination of deep drawing and cold forging process is tried to achieve near net shaping of automatic transmission part which has drum shape and thickness variation. It is key for successful shaping of the part to find out proper condition to combine two different forming methods. Finite element analysis can be utilized for that purpose effectively. Integrity, reliability, and durability of the part are improved by eliminating machining process. The developed process is applied in real manufacturing process successfully.

  • PDF

Process Design, Fabrication, and Evaluation of Cold Drawn SUS304N Coil Wedge (SUS304N 코일 웨지 인발 공정의 설계, 제조 및 평가)

  • Jung, J.E.;Kim, S.J.;Bae, S.;Namkung, J.;Kim, S.M.;Kim, S.I.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.212-218
    • /
    • 2019
  • In this study, the first drawing die for the production of coil wedge is redesigned in order to enhance properties such as dimensional accuracy, dimensional uniformity, non-magnetism, and residual stress. The equivalent strain distribution is observed to be asymmetric at certain corners of the product and un-filling of material is also observed at the same location, based on the results of FEM simulation for the current drawing process. Additionally, a relatively huge amount of deformation is concentrated on the surface of the reference product leading to an increase in magnetic component and surface residual stress. After re-designing the cross-section of the first drawing step process conformed to relatively higher amount of reduction ratio, reduction of both surface residual stress and the volume fraction of magnetic component could be achieved for the finally-drawn coil wedge product.

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

Prediction of Die Wear in Extrusion and Wire Drawing (축대칭 압출 및 인발공정 중의 금형마멸예측)

  • Kim, Tae-Hyeong;Kim, Byeong-Min;Choi, Jae-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3031-3037
    • /
    • 1996
  • In cold forming processes, due to high working pressure action on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures into devlop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the forming propcesses that involve cold forward extrusion and wire drawing were simulated by rigid plastic finite element method and its output were used for predicting die wear by Archard wear model. The simulation results were compared with the measured worn dies.

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

Competitiveness of the Small Package Express Service (소화물 일관수송업(택배업)의 경쟁력 강화)

  • 송계의
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.223-238
    • /
    • 1998
  • In this study, to investigate the effect of process variables such as reduction in area, semi-die angle and the rectangular ratio to the corner filling which influences the dimensional accuracy of the final product in the drawing of the cluadrangle rod from a round bar, it has been simulated by three dimensional rigid-plastic finite element method. In order to reduce the number of simulation artificial neural network has been introduced. Also, through the experimental investigation, the present results have been implemented on the industrial product. In results, the main process variable is the combination of the semi-die angle in case of the irregular shaped drawing process and reduction in area in the event of regular shaped drawing process, respectively.

  • PDF