• 제목/요약/키워드: Cold Die Compaction

검색결과 19건 처리시간 0.02초

냉간 압축 하에서 금속 분말의 치밀화 거동 (Densification Behavior of Metal Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.652-657
    • /
    • 2001
  • Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

  • PDF

냉간 압축 하에서 금속 분말의 치밀화 거동 (Densification Behavior of Metal Powder Under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.95-104
    • /
    • 2002
  • Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densifcation behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

냉간압축 하에서 지르코니아 분말이 혼합된 알루미늄합금 분말의 치밀화 거동 (Densification Behavior of Aluminum Alloy Powder Mixed with Zirconia Powder Inclusion Under Cold Compaction)

  • 유현석;이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1324-1331
    • /
    • 2002
  • Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The Cap model with constraint factors was implemented into a finite element program (ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the Cap model with constraint factors were good.

냉간압축하에서 혼합금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder under Cold Coompaction)

  • 조진호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

냉간압축하에서 혼합 금속분말의 치밀화 거동에 관한 유한요소해석 (A Finite Element Analysis for Densification Behavior of Mixed Metal Powder under Cold Compaction)

  • 조장혁;조진호;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.393-398
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions originally proposed by Fleck-Gurson for pure powder, a new mixed yield functions In terms of volume fractions and contact numbers of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data. and with calculated results from the model of Kim et at. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

냉간압축하에서 혼합 금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder Under Cold Compaction)

  • 조장혁;조진호;김기태
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2628-2636
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction- was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms o f volume fractions and contact numbers of Cu powder, new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data and with calculated results from the model of Kim et al. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

냉간압축 하에서 실리콘 카바이드 분말의 치밀화해석 (Densification Analysis for SiC Powder under Cold Compaction)

  • 박환;김기태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.589-595
    • /
    • 2000
  • Densification behavior of SiC powder was investigated under cold compaction. A special form of the Cap model was proposed from experimental data of SiC powder under triaxial compression. To compare with experimental data of SiC powder under cold compaction, the proposed constitutive model was implemented into a finite element program (ABAQUS). Finite element calculations from the Cam-Clay model and the modified Drucker-Prager model were also compared with experimental data of SiC powder. The agreements between experimental data and finite element results obtained from the proposed constitutive model are reasonably good. In die pressing, finite element results obtained from the Cam-Clay model and the modified Drucker-Prager model, however, show lower average density of SiC powder compacts compared to experimental data.

  • PDF

냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구 (A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

냉간 압축 하에서 나노 세라믹 분말의 치밀화 거동 (Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1242-1248
    • /
    • 2006
  • Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

금속분말 혼합체의 압력의존 항복모델과 유한요소법을 이용한 금형압분 공정 시 고형화 해석 (Pressure-Dependent Yield Model for Metallic Powder Mixtures and Their Densification Behavior During Die Compaction as Analyzed by the Finite Element Method)

  • 윤승채;김택수;강승구;김형섭
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.567-572
    • /
    • 2009
  • The densification behaviors of mixtures of copper and steel powders during cold die compaction were investigated. We proposed the pressure-dependent yield function based on the rule of the mixtures of each yield function of a critical relative density type. The constitutive equations were implemented into a finite element program (DEFORM2D) to analyze the densification and deformation behavior of powder mixtures, and the simulated results are in good agreement with the experimental results in reference studies.