• Title/Summary/Keyword: Cold Damage

Search Result 519, Processing Time 0.023 seconds

A Study on Improvement of Inspection Activity Based upon Condition Analysis of Expressway Bridges (고속도로 교량의 상태 분석에 근거한 점검 활동 개선에 관한 연구)

  • Jeon, Jun Chang;Lee, Il Keun;Park, Chang Ho;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • In this paper, detailed safety inspection reports on the 915 expressway bridges which had been published from 1996 to 2010 are collected and condition of these bridges are analyzed. Damages are categorized into 'damage by defect', 'damage by physical force', and 'damage by deterioration' and the concept of damage possession rate is introduced to investigate the occurrence time and the characteristics of damages. Based on the top 10 damage patterns of expressway bridges and the deterioration characteristics of heavy snow and freezing cold area, reasonable improvement direction of inspection activity is suggested. From this study, it is known that improvement of inspection regularization during construction or at completion stage of bridges is needed. Since the deterioration progress of the heavy snow and freezing cold area is faster than that of general area, environmental characteristics should be considered in inspection activity. The results of present study can be widely used for improvement of inspection activity of expressway bridges.

The Effects of Major Climatic Factors on Barely Response to NPK Fertilizers (대맥(大麥)의 NPK 비료응수(應酬)에 미치는 주요기상인자(主要氣象因子)들의 영향(影響)에 관(關)하여)

  • Park, Nae Jung;Lee, Choon Soo;Ryu, In Soo;Park, Chon Suh;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 1973
  • In order to study the effects of climatic factors on barley responses to NPK fertilizers, the responses under the conditions of cold, moisture and drought damages and in different temperature regions, Nothern, Central, and Southern, which were devided according to average temperature for growing season of barley (from Nov. to May) were investigated from the results of NPK experiments which were carried out from Nov., 1965 to May 1969. The relationships between occurrence rate of cold, moisture, and drought damages and average or average lowest temperature in winter (Dec., Jan., and Feb), and the amount of precipitation in spring (Mar., Apr,. and May) were also investigated. 1. The lower the average lowest temperature, the higher the occurrence rate of cold damage of barley. When affected by cold damage, barley responded more significantly to P and K fertilizers. 2. The more the amount of precipitation in spring, the more the moisture damage and the less the drought damage. Damage from both moisture and drought were the lowest at 280mm. Since the average precipitation in spring in Korea is 230mm, drought damage is always more problem in terms of occurrence of damage, but total yield reduction is greater by moisture damage. 3. When affected by moisture damage, barley responded more to P and K fertilizers. In case of drought damage, only response to K was recognizable. 4. The reductions of barley yield due to cold, moisture, and drought damages were in average 31 (29-33), 42, and 19(12-25)%, respectively. 5. Average barley responses to NPK fertilizers were 44(34-58), 19(5-38), and 9(1-34)%, respectively by percent responses with regard to maximum possible yields. 6. Responses to nitrogen increased as the sunshine hours increased. Under dry condition, the response increased as the precipitation increased. However if the amount of precipitation was excessive or too little, the response was dropped markedly. 7. The responses to P and K were higher in North than South to the same degree. As the average temperature for growing season of barley (from Nov. to May) increased by $1^{\circ}C$, the percent responses to both P and K increased by 4.3%.

  • PDF

A Study on fatigue Properties with Different Edge Margin for Hole Expansion Plate (홀 확장된 판재의 에지마진 변화에 따른 피로특성 연구)

  • Lee, Joon-Hyun;Lee, Dong-Suk;Lee, Hwan-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2383-2389
    • /
    • 2002
  • This paper describes an experimental study on fatigue life extension by using cold working process in fastener hole of aircraft structure. Cold working process was applied for A12024-7351 specimens by considering the effect of edge margin on fatigue life. It is generally recognized that cold working process offers a protective zone around fastener hole of aluminum aircraft structure due to the residual compressive stresses which lead to retardation of crack growth. Thus this process provides the beneficial effect of increasing the fatigue life of the component. there by decreasing maintenance costs. It has also been successfully incorporated into damage tolerance and structural integrity programs. Cold working specimens were tested at constant amplitude peak cyclic stresses. Fatigue life of cold working specimen compared with that of specimen fabricated with base material. The increase of fatigue life for cold working specimen is discussed by both considering the effect of residual compressive stresses measured by X-ray diffraction technique and quantitative effect of edge margin.

Pathological Entity of Jueyin Disease and the Relationship between the Concept of Three-Yin-Three-Yang in 《Shanghanlun》 (《상한론(傷寒論)》 궐음병의 병리본질과 삼음삼양(三陰三陽) 개념과의 관계)

  • Chi, Gyoo Yong;Park, Shin Hyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • In order to research the pathological entity of Jueyin disease in ${\ll}Shanghanlun{\gg}$, some sharing concept of three-yin-three-yang used in ${\ll}Neijing{\gg}$ and ${\ll}Shanghanlun{\gg}$ were investigated first, and then the meaning of jueyin and jueyin disease were analyzed. In cold damage disease, time-space factor is important because the pathological change is rapid and the symptoms along path are similar, therefore three-yin-three-yang having complex meaning of time and space can be used as an appropriate pathological concept. So to speak, it is able to be interpreted as various modes like variations of yin-yang, qi-blood, change of pulse condition, theories of opening, closing, pivot or exuberance and debilitation of form and qi manifested in the six districts of the human body following disease process. Jueyin is between front taiyin and rear shaoyin, and it's attribution is inherent in qi stagnation and yin exuberance in relative to the location of flank and liver. Putting together above descriptions, pathological entity of jueyin disease is that the symptoms mingled with cold and stagnant heat competing each other when a subject having qi stagnation in flank with cold in extremities and lower abdomen in particular is seized with cold influenza.

A Study on the Cooling Effects of Mist in the Grinding (연삭 가공시 Mist의 냉각효과에 관한 연구)

  • 이석우;최헌종;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.918-921
    • /
    • 2001
  • In grinding process, the heat of $1200^{\circ}$~$1500^{\circ}$ on the grinding area between grinding wheel and workpiece is generated. It decreases the surface integrity of workpiece and causes the thermal damages such as the deformed layer, residual stress and grinding burn. Generally coolant is widely used for preventing the heat generation on the grinding area, but it deteriorates the working condition by polluting the atmosphere of workplace and in the end pollutes the environment. The grinding methods using the compressed cold air and mist are the cooling methods to substitute conventional coolant. They can decrease the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of grinding methods using the compressed cold air and mist have been investigated. The grinding system equipped with the water bathe and mist spray nozzle was developed. The energy partition to workpiece through measuring the temperature on the workpiece surface was calculated. The surface integrity of workpiece and thermal damage like the deformed layer were analyzed.

  • PDF

Heat Transfer Test of Tunnel Lining with Heat Insulation (단열재 적용에 따른 터널 라이닝 열전달량 시험)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.5-12
    • /
    • 2017
  • The surface of the tunnel lining issues various problems such as cracks due to the cold weather. It is necessary to reduce the recovery costs by means of developing new recovery techniques. However, the research on reducing the damage of road tunnel lining caused by cold weather has not actively been conducted. Hence, this paper analyzes the effectiveness of using insulating materials such as aerogel and heat insulating liquid in enhancing insulating capability. The results show that these materials are effective in reducing heat transfer, confirming damage reduction in cold weather.

Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis

  • Davani, M.R.;Hatami, S.;Zare, A.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1369-1388
    • /
    • 2016
  • This study is an effort to clearly recognize the seismic damages occurred in strap-braced cold formed steel frames. In order to serve this purpose, a detailed investigation was conducted on 9 full scale strap-braced CFS walls and the required data were derived from the results of the experiments. As a consequence, quantitative and qualitative damage indices have been proposed in three seismic performance levels. Moreover, in order to assess seismic performance of the strap-braced CFS frames, a total of 8 models categorized into three types are utilized. Based on the experimental results, structural characteristics are calculated and all frames have been modeled as single degree of freedom systems. Incremental dynamic analysis using OPENSEES software is utilized to calculate seismic demand of the strap-braced CFS walls. Finally, fragility curves are calculated based on three damage limit states proposed by this paper. The results showed that the use of cladding and other elements, which contribute positively to the lateral stiffness and strength, increase the efficiency of strap-braced CFS walls in seismic events.

Residual Stress Prediction and Hardness Evaluation within Cross Ball Grooved Inner Race by Cold Upsetting Process (냉간 업셋팅 공정에 의한 경사형 볼 그루브를 갖는 내륜의 잔류응력 예측 및 경도 평가)

  • T.W. Ku
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • This study deals with residual stress prediction and hardness evaluation within cross ball grooved inner race fabricated by cold upsetting process consisted of upsetting and ejection steps. A raw workpiece material of AISI 5120H (SCr420H) is first spheroidized and annealed, then phosphophyllite coated to form solid lubricant layer on its outer surface. To investigate influences of the heat treatment, uni-axial compression tests and Vickers micro-hardness measurements are conducted. Three-dimensional elasto-plastic FE simulations on the upsetting step and the ejection one are performed to visualize the residual stress and the ductile (plastic deformation) damage. External feature of the fabricated inner race is fully captured by using an optical 3D scanner, and the micro-hardness is measured on internal cross-sections. Consequently, the dimensional compatibility between the simulated inner race and the fabricated one is ensured with a difference of under 0.243mm that satisfied permissible error range of ±0.50mm on the grooved surface, and the predicted residual stress is verified to have similar distribution tendency with the measured Vickers micro-hardness.

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

A fracture criterion for high-strength steel structural members containing notch-shape defects

  • Toribio, J.;Ayaso, F.J.
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2003
  • This paper deals with the formulation and development of fracture criteria for high-strength structural members containing surface damage in the form of notches (i.e., blunt defects). The important role of the yield strength of the material and its strain hardening capacity (evaluated by means of the constitutive law or stress-strain curve) is analysed in depth by considering the fracture performance of notched samples taken from high-strength steels with different levels of cold drawing (the most heavily drawn steel being commercial prestressing steel used in prestressed concrete). The final aim of the paper is to establish fracture-based design criteria for structural members made of steels with distinct yield strength and containing very different kinds of notch-shape surface damage.