• Title/Summary/Keyword: Cold Air Distribution

Search Result 149, Processing Time 0.028 seconds

A Study on the Characteristics of Natural Convection in a Partially Opened Enclosure with a Heat Source (발열체와 부분 열림 수직벽을 갖는 사각 공간내 자연대류 특성 해석)

  • Shim, Dong-Sik;Kang, Bo-Seon;Cha, Dong-Jin;Ju, Won-Jong
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.322-327
    • /
    • 2000
  • Natural convection heat transfer in an enclosure with an opening in the right vertical wall and a heat source at the bottom surface is investigated using a holographic interferometric technique. The effects of the opening length, divider length attached to the top wall, and heater temperature on the temperature distribution are examined. The openging length as well as the divider length greatly affects the degree of inflow and outflow of air. With a small opening, the opening doesn't affect much the upward warm air flow resulting in the symmetric temperature distribution. On the other hand, with the increase of the opening length, the inward cold flow moves the upward flow to the left direction. With the increase of the divider length, temperature in the lower region of enclosure becomes higher for the small opening and lower for the large opening.

  • PDF

Investigation of In-Cylinder Phenomena in a SI Engine (가솔린 엔진의 연소실내 현상 연구)

  • Kim, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.10-18
    • /
    • 1998
  • To investigate the in-cylinder phenomena in a SI engine with 3 valves and pent-roof type combustion chamber, flow fields, fuel distributions, and flame propagations were measured in a single c!'tinder visualized engine. Flow fields were visualized by PTV system during the intake and compression process. Fuel distributions were measured by PLIF at the various engine conditions including the cold and hot engine conditions and the effect of air-shrouded injector on the fuel distribution was investigated also. In addition, flame propagation patterns were characterized.

  • PDF

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.

Simulation for Improvement of Temperature Distribution Inside Refrigerator (냉장고 고내 온도산포 개선에 관한 전산모사)

  • Gao, Jia-Chen;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.98-103
    • /
    • 2019
  • With the increasing need for environmental protection, it is particularly important to improve the energy saving and reliability of refrigerators. Generally, the cold air flowing into the freezer compartment transits to the bottom of the refrigerating compartment, which can lead to uneven temperature distribution. This paper proposes two design solutions for improving the temperature distribution problem. Of these, the optimal refrigeration design was selected and tested using Computational Fluid Dynamics (CFD) modeling and simulation. The results showed improved uniformity of the temperature distribution inside the refrigerator, thus benefitting food storage while reducing energy consumption.

Performance Evaluation of Air-to-Air Total Heat Transfer with Rotating Porous Plates (다공의 전열판이 내장된 공기 대 공기 전열교환기의 성능 평가)

  • Lim, T.W.;Cho, D.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • The performance of air-to-air heat exchanger has been investigated with rotating porous plates newly developed in this study. With an equal interval of 18 mm, the rotating porous plates are installed inside the heat exchanger where the hot and cold airs enter at opposite ends. When flowing in opposite directions by the separating plate installed in the center of the rotating porous plates, the airs give and receive the heat each other. Dry bulb temperature is set by adjusting heat supply at heater. In order to measure the temperature distribution of the hot air side inside heat exchanger, the thermocouples are inserted between the plates. The first location of thermocouple is 10mm downstream from the inlet of heat exchanger, and succeeding ten locations are aligned at an equal interval of 18mm. From the experiment of air-to-air heat exchanger with the rotating porous plates, the heat transfer rate increased as both air flow rate and RPM of the rotating porous plate increased. It was found that the overall heat transfer coefficient increased with the increase in RPM of porous plate at the conditions of the same air flow rate.

  • PDF

Estimation of Benzene Emissions from Mobile Sources in Korea (국내 이동오염원에서 발생되는 벤젠 배출량 산정)

  • Lee, Ju-Hyoung;Cha, Jun-Seok;Hong, Ji-Hyung;Jung, Dong-Il;Kim, Ji-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.72-82
    • /
    • 2008
  • Benzene is a very harmful and toxic compound known as human carcinogen by all routes of exposure. Owing to the risky feature of benzene, several countries such as Japan, UK and EU have established the ambient air quality standard and protect from that risk of it. Korea also has designated it as one of the criteria air pollutants and established the concentration limit ($5\;{\mu}g/m^3$) in the air and is going to apply the standard from 2010. Benzene is emitted from various sources such as combustion plants, production processes, waste treatment facilities and also automobiles. Mobile source is known as one of the major emission sources of benzene. In this study, we estimated the domestic emissions of benzene from mobile source and compared the results with those of advanced countries. Mobile source was divided into 2 categories, Le., on-road source and non-road source. The total emissions of benzene from mobile source were estimated as 3,106 tons/yr and 1,612 tons/yr was emitted from on-road source and 1,494 tons/yr was from non-road source. Emission ratio of benzene from on-road source showed that 80.0% was from passenger cars, 10.1% was from taxis, 7.2% was from light-duty vehicles, 2.5% was from heavy-duty vehicles and 0.2% was from buses. In the case of non-road source, the distribution showed that 66.3% was from construction machineries, 14.5% was from locomotives, 11.7% was from ships, 7.1% was from agriculture equipments and 0.5% was from aircrafts. The cold-start emissions were estimated as 942 tons/yr and this value was almost 1.5 times greater than that for hot engine emissions (608 tons/yr). In addition, the fuel-based distribution was 65.9%, 31.1% and 2.8% from gasoline, LPG and diesel vehicles, respectively. The emission ratio from mobile source occupied 65% and 30% of total benzene emissions in USA and UK, respectively. In case of Korea, the emission ratio of benzene from mobile source occupied 29% (15% from on-road source, 14% from non-road source) which showed similar value with UK.

Characteristics of Weather and Climate over the Okhotsk Sea

  • KIM Young Seup;HAN Young Ho;CHEONG Hyeong Bin;DASHKO Nina A.;PESTEREVA Nina M.;VARLAMOV Sergey M.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.974-983
    • /
    • 1997
  • The Okhotsk Sea is unique natural object with climatic peculiarities. The climate of the Okhotsk Sea results from the general distribution of solar radiation during a year, and the characteristics of the atmospheric circulation that varies through a year: In cold half year the main pressure formations are Siberian high and Aleutian low. Asian low centered on Afghanistan dominates over the Asian continent in summer. The North-Pacific sea surface is under effect of permanent North Pacific high. The changes in their position from year to year are very significant. The anticyclonic activity over the Far Eastern Seas is one of the main factors for the formation of weather anomalies over the adjacent territories. The analysis of summer weather characteristics over the coast of Okhotsk and East Sea using the data obtained from Hydrometeorological stations during $1949\~1990$ showed that, to a great extent, distribution of the air temperature depends on thermal state of the Okhotsk Sea and atmospheric circulation over it. We show some relations between weather characteristics and the intensity of atmospheric action center for the North Pacific high in summer when its ridge propagates to Okhotsk Sea. Correlation coefficients between air pressure over the Okhotsk Sea and air temperature for the coastal areas reach up to 0.7. Analysis of the spatial-temporal distribution of main meteorological values over the Okhotsk Sea such as air pressure, and air temperature are also performed.

  • PDF

Numerical Evaluation of a Radially Variable Cell Density Strategy for Improving Light-off Performance: Focusing on Light-off Catalyst (자동차용 촉매변환기의 활성화 성능 향상을 위한 횡방향 가변 셀 밀도법의 수치적 평가: 활성화 촉매변환기를 중심으로)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.115-124
    • /
    • 2002
  • The optimum design of auto-catalyst needs a good compromise between the pressure drop and flow distribution in the monolith. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. However, there has been no study of evaluating the usefulness of this method on light-off catalyst. We have computationally investigated the effectiveness of variable cell density technique applied to the light-off catalyst using a three-dimensional integrated CFD model. in which transient chemical reacting calculations are involved. Computed results show that variable cell density technique can reduce the accumulated emissions of CO and HC during the early 100sec of FTP cycle by 86.78 and 80.87%, respectively, The effect of air-gap between the monoliths has been also examined. It is found that air-gap has a beneficial effect on reducing pressure drop and cold-start emissions.

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF

A Study on the Temperature Characteristics of the Floor Cooling System of Mock-up Experimentent (Mock-up실험에 의한 바닥복사 냉방시스템의 온도특성에 관한 연구)

  • Yoo, Ho-Chun;Lee, Young-A
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.48-57
    • /
    • 2008
  • The research analyzed the distribution of the indoor temperatures of a radiant floor cooling system through mock-up experiments. It investigated the temperature difference of feed water, the vertical temperature difference of indoor air, the temperature difference of floor surface, and so on. The following is the results of the research. First, the research shows that the difference between indoor temperature and outside temperature was the smallest when the temperature of feed water was set at 16$^{\circ}C$. In addition, the temperature changes according to indoor positions (wall, room, floor, and ceiling) were the most uniform. Thus, the research found that the cold water temperature of 16$^{\circ}C$ is the most proper. In addition, it confirmed that the feed water temperature of 18$^{\circ}C$ is effective because the temperature can lower the temperature of a room to 13.55$^{\circ}C$, which is lower than the temperature of a non-cooling mode. Second, an investigation on the temperature distribution of vertical air in indoor space shows that the temperature distribution had a difference of 0.2 to 1.9$^{\circ}C$ on the average, which satisfies the range of 3.0$^{\circ}C$ in the standard of ISO.