• Title/Summary/Keyword: Coke Oven

검색결과 42건 처리시간 0.023초

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Risk Assessment and Its Application for the POSCO's Batch Annealing Furnace Gas Systems (광양제철소 소둔로 가스설비에 대한 위험성 평가 및 안전성향상안 제시)

  • Kim Y. S.;Yoo J. H.;Jeong S. Y.;Jang E. J.
    • Journal of the Korean Institute of Gas
    • /
    • 제5권2호
    • /
    • pp.9-13
    • /
    • 2001
  • A complete spectrum of risk assessment including qualitative and quantitative approaches were performed for the POSCO's Batch Annealing Furnace (BAF) gas systems. The purpose of BAF is to enhance the quality of steel by annealing it with either hydrogen/nitrogen mixture gas or pure hydrogen gas. Number of gas leak scenarios were identified to generate frequency of their occurrences. With the hypothetical accident scenarios given, fire/explosion impact studies were performed to estimate magnitude of significant consequences. Several different indices were also presented from which practical safety improvement action items could be established.

  • PDF

Analysis of the Thermal Processes in the Iron-Making Facility - Modeling Approach (제선 설비의 열공정 해석 모델링 접근 방법)

  • Yang, Won;Ryu, Chang-Kook;Choi, Sang-Min;Choi, Eung-Soo;Ri, Deok-Won;Huh, Wan-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제28권7호
    • /
    • pp.747-754
    • /
    • 2004
  • Thermo-fluid characteristics in coke oven, sintering machine and blast furnace in iron-making facility are key processes related to the quality and productivity of the pig iron. Solid material in the processes usually forms a bed in a gas flow. For simulation of the processes by mathematical model, the solid beds are idealized to be a continuum and a reacting solid flow in the gas flow. Governing equations in the form of partial differential equations for the solid material can be constructed based on this assumption. Iron ore sintering bed is simulated and limited amount of parametric study have been performed. The results have a good agreement with the experimental results or physical phenomena, which shows the validity and applicability of the model.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Effect of Nozzle Distance and Angle in the Iron-ore Sintering Dual Burner on Flame Characteristics (철광석 소결용 듀얼 버너의 노즐 간격과 각도가 화염 특성에 미치는 영향)

  • Lee, Young-Jun;Hwang, Min-Young;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • 제19권3호
    • /
    • pp.163-170
    • /
    • 2010
  • The objective of this study is to investigate the combustion characteristics of dual type of sintering burner as a function of design parameters using lab-scale sintering burner through experimental and numerical approaches. Combustion characteristics were evaluated by the radical method. The numerical model was verified as a temperature using R type of thermocouple at the bed surface. The effect of nozzle distance and angle were performed through the CFD analysis, and the comparison of burner types. As a results, dual type burner has more wider and uniform flame distribution than single type burner. Asymmetry and 45 degree angle condition have been suggested as an optimal condition for the ignition of the sintering bed surface.

The Status of Domestic Hydrogen Production, Consumption, and Distribution (국내 수소 생산, 소비 및 유통 현황)

  • Gim, Bong-Jin;Kim, Jong-Wook;Choi, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제16권4호
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

Optimization of Reaction Conditions for the High Purity Hydrogen Production Process Using By-Product Gases in Steel Works (철강산업 부생가스를 이용한 고순도 수소 제조 공정의 반응 조건 최적화)

  • CHOI, HANSEUL;KIM, JOONWOO;KIM, WOOHYOUNG;KIM, SUNGJOONG;KOH, DONGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제27권6호
    • /
    • pp.621-627
    • /
    • 2016
  • Low-priced hydrogen is required in petrochemical industry for producing low-sulfur oil, and upgrading low-grade crude oil since environmental regulations have been reinforced. Steel industry can produce hydrogen from by-product gases such as Blast Furnace Gas (BFG), Coke Oven Gas (COG), and Linze Donawitz Gas (LDG) with water gas shift (WGS) reaction by catalysis. In this study, we optimized conditions for WGS reaction with commercial catalysts by BFG and LDG. In particular, the influence on activity of gas-hourly-space-velocity, and $H_2O/CO$ ratios at different temperatures were investigated. As a result, 99.9%, and 97% CO conversion were showed with BFG, and LDG respectively under $350^{\circ}C$ High Temperature Shift (HTS), $200^{\circ}C$ Low Temperature Shift (LTS), 3.0 of $H_2O/CO$, and $1500h^{-1}$ of GHSV. Furthermore, 99.9% CO conversion lasted for 250 hours with BFG as feed gas.

Degradation of Cyanide by Activated Sludge Immobilized with Polyethylene Glycol (고정화 활성슬러지를 이용한 시안 분해)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Kim, Jung-Ae;Moon, Ok-Ran;Kim, Myung-Hee
    • Journal of Environmental Science International
    • /
    • 제17권12호
    • /
    • pp.1343-1351
    • /
    • 2008
  • The activated sludge obtained from wastewater coke oven plant was immobilized by entrapment with polyethylene glycol (PEG). The effects of several factors on the biodegradation of $CN^-$ from. synthetic wastewater were investigated using batch and continuous reactors. The degradation rate of $CN^-$ increased with increasing of the immobilized bead volume in the reactor. Approximately 7.65mg/L of $NH_4-N$ was produced upon the degradation of 35mg/L of $CN^-$. When high concentrations of the toxic cyanide complex were used in the testing of cyanide degradation, the free activated sludge could be inhibited more than that of the immobilized activated sludge. When the phenol concentration was higher than 400mg/L in the synthetic wastewater, approximately 98.4% of $CN^-$ was removed within 42 hours by the immobilized activated sludge. However, the cyanide was not completely degraded by the tree activated sludge. This indicates that high phenol concentrations can act as a toxic factor for the free activated sludge. A $CN^-$ concentration of less than 1mg/L was achieved by the immobilized sludge at the loading rate of 0.025kg $CN^-/m^3-d$. Moreover, it was found that the HRT should be kept for 48 hours in order to obtain stable treatment conditions.

An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry (철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구)

  • Eom, Y.S.;Hong, J.H.;Kim, J.S.;Kim, D.G.;Lee, S.B.;Song, H.D.;Lee, S.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제23권1호
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

Impact of AhR, CYP1A1 and GSTM1 Genetic Polymorphisms on TP53 R273G Mutations in Individuals Exposed to Polycyclic Aromatic Hydrocarbons

  • Gao, Meili;Li, Yongfei;Xue, Xiaochang;Long, Jiangang;Chen, Lan;Shah, Walayat;Kong, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2699-2705
    • /
    • 2014
  • This study was to undertaken to investigate the impacts of AhR, CYP1A1, GSTM1 genetic polymorphisms on the R273G mutation in exon 8 of the tumor suppressor p53 gene (TP53) among polycyclic aromatic hydrocarbons (PAHs) exposed to coke-oven workers. One hundred thirteen workers exposed to PAH and 82 control workers were recruited. We genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and TP53 R273G mutation in blood by PCR methods, and determined the levels of 1-hydroxypyrene as PAH exposure marker in urine using the high pressure liquid chromatography assay. We found that the distribution of alcohol users and the urinary excretion of 1-OHP in the exposed workers were significantly higher than that of the control workers (p=0.004, p<0.001, respectively). Significant differences were observed in the p53 genotype distributions of smoking subjects (p=0.01, 95%CI: 1.23-6.01) and PAH exposure (p=0.008, 95%CI: 1.24-4.48), respectively. Further, significant differences were observed in the p53 exon 8 mutations for the genetic polymorphisms of Lys/Arg for AhR (p=0.02, 95%CI: 0.70-15.86), Val/Val for CYP1A1 (p=0.04, 95%CI: 0.98-19.09) and null for GSTM1 (p=0.02, 95%CI: 1.19-6.26), respectively. Our findings indicated that polymorphisms of PAH metabolic genes, such as AhR, CYP1A1, GSTM1 polymorphisms may interact with p53 genetic variants and may contribute to PAH related cancers.