• Title/Summary/Keyword: Coir substrate

Search Result 64, Processing Time 0.026 seconds

Effect of EC Level of Irrigation Solution on Tomato Growth and Inorganic Ions of Root Zone in Soilless Culture of Tomato Plant Using Coir Substrate (코이어 배지 이용 토마토 장기 수경재배시 급액 EC가 근권부 무기이온과 생육에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kang, Nam Jun;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.418-423
    • /
    • 2017
  • In hydroponics, the nutrient solution is supplied considering the water and nutrient uptake characteristics of crops. However, as the ionic uptake characteristics are changed as a result of the weather conditions or the growth response of the crops, the root zone can not be maintained in optimal condition. In addition, the coir substrate has been used mainly for the tomato cultivation in place of the inorganic substrate, there are few studies on long-term cultivation using coir substrate. Therefore, this study was conducted to investigate the effect of EC level of irrigation solution on tomato growth and inorganic ions of root zone in soilless culture using coir. Coir substrate mixed with 5 : 5 chip and dust was used. EC level of irrigation solution was 1.0, 1.5, 2.0, and $3.0dS{\cdot}m^{-1}$. At the initial stage, $NO_3-N$, P, Ca and Mg in the drainage were lower than the irrigation level at 1.0 and $1.5dS{\cdot}m^{-1}$. However, EC $2.0dS{\cdot}m^{-1}$ or higher, all the ions except P were highly concentrated in the drainage. The average fruit weight was not significantly different between 1.0 and $1.5dS{\cdot}m^{-1}$ until 3th cluster, but from the next cluster, the higher the EC level, the smaller the weight. The number of fruit and yield to 6th cluster was the highest at $1.5dS{\cdot}m^{-1}$. From the next cluster, The yield was decreased with the higher EC level. At the early stage of growth, BER occurred only in EC $3.0dS{\cdot}m^{-1}$, but increased in all treatments with increasing irradiation. The incidence rate of EC $3.0dS{\cdot}m^{-1}$ was higher than that of the lower EC level treatment.

Enhancement of the Growth and Quality of Soybeans Using Wasted Coir Substrates on Multi-purpose Utilization Land (범용 농지에서 코이어 폐배지를 이용한 콩의 생육 및 품질 증대)

  • Xin Wang;Jiwoo Park;Yong Jae Lee;Gwang Ya Lee;Jongseok Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.466-474
    • /
    • 2023
  • In recent years, the government has strongly promoted multi-purpose utilization of paddy field. However, poor drainage causes waterlogging stress in upland crops, requiring subsurface drainage technology, resulting in high installation and management costs. To address this issue, a low-cost and high-efficiency technique was developed that utilizes wasted coir substrates which have characteristics of high porosity and good drainage, for upland crop cultivation in paddy fields. Soybeans were grown in both paddy soil and wasted coir slab with two planting densities (80×20 cm and 60×20 cm). The results showed that the coir substrates had better performance than the paddy soil in terms of soil physical and chemical properties and the growth and yield of upland crops are improved. The treatments using wasted coir substrate showed a 41.4% increase in yield and a 21.3% increase in protein content compared to PS treatment. Our findings demonstrate that recycling waste coir substrates to grow upland crops is a positive cultivation strategy to solve some drainage problems in paddy fields. This approach offers a sustainable solution for upland crop production while also addressing the issue of waste management in agriculture.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Impact of Physico·chemical Properties of Root Substrates on Growth of 'Seolhyang' Strawberry Daughter Plants Occurred through Bag Culture of Mother Plants (포트 충전용 상토의 물리·화학성이 플라스틱백 재배를 통해 발생한 '설향' 딸기의 자묘 생육에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Yoon, Moo-Kyung
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.964-972
    • /
    • 2010
  • Objective of this research was to determine the influence of physico.chemical properties of root substrates on growth of daughter plants that were developed through plastic bag cultivation of mother plants in 'Seolhyang' strawberry propagation. Six different formulations of root substrates for daughter plant cultivation were peatmoss + vermiculite (5:5, A), peatmoss + perlite (7:3, B), coir dust + perlite (7:3, C), coir dust + peatmoss + perlite (3.5:3.5:3.0, D), rice-hull + coir dust + perlite (2:7:1, E), and rice hull + coir dust (3:7, F). The 10 cm plastic pots filled with formulated substrates were located near the plastic bag where mother plants were growing. Then the runners and daughter plants originated from mother plants were fixed on each root substrate filled into 10 cm plastic pot and daughter plants were grown in the plastic pots. The container capacity and air space showed big differences among substrates tested. The substrates E and F had the less container capacity and the higher air space than other substrates tested. This indicates that the two substrates would have difficulties in water managements during the raising of daughter plants. The substrates of A, B, and D which contained peatmoss in formulation had higher nitrogen concentrations than those containing coir dust or rice hull. The substrates of E and F which contained rice hull had lower nitrogen, phosphorus and potassium concentrations than those that contained coir. The crown diameters of daughter plants grown in substrate A were around 13 mm which is thicker than those grown in other substrates. The fresh weights of daughter plants grown in A substrate were the heaviest followed by C, F, D, E, and B. The dry weight of daughter plants showed similar tendency to those of fresh weight. The daughter plants which had heavy fresh and dry weights and thick crown diameter are considered good seedlings. Based on this justification, the substrates of A, C and F are acceptable for daughter plant growth of 'Seolhyang' strawberry.

Growth and Yield According to Various Bending Methods when Planting Seedlings Directly on Coir Substrate Slabs in Paprika Cultivation (파프리카 묘의 직접 정식 시 절곡 방법에 따른 생육 및 생산량)

  • Hur, Young Mun;Ko, Baul;Ku, Yang Gyu;Kim, Chul Min;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.251-256
    • /
    • 2021
  • This study aimed to compare the growth and production of paprika (Capsicum annuum) planted directly on a coir substrate slab according to the bending methods. The existing root direction was bent to 0° (I-type), 90° (L-type), and 180° (U-type), respectively. The weekly average growth such as stem length, diameter, and leaf area tended to be the highest in the I-type bending, but there was no statistical difference. Root weight at 46 weeks after planting was also about 1.3 to 1.7 times heavier in the I-type than the L- and U-type bending. As the yield produced by 330 plants by bending methods, the initial yield was the highest in the U-bending, but then the highest in the I-bending. Accordingly, the total yield was the highest in I-bending. Consequently, when planting on coir substrates directly in paprika cultivation, the I-type bending should be considered most suitable for securing root and plant vigor in the early stages of planting and for enhancing fruiting stability.

Effect of EC Levels in Nutrient Solution on the Growth of Juvenile Rose in Hydroponics Using Coir Substrate (코이어 배지 이용한 절화장미 수경재배 시 급액농도가 유묘기 생육에 미치는 영향)

  • Choi, Gyeong Lee;Cho, Myeong Whan;Cheong, Jae Woan;Rhee, Han Cheol;Kim, Young Cheol;Roh, Mi Young;Kang, Yun Im
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • This study was carried out to investigate the effect of EC levels in nutrient solution on the growth of rose in coir substrate during the juvenile. Nutrient concentration were EC 0.6, 1.0, 1.4, and $1.8dS{\cdot}m^{-1}$. In spite of high concentration of nutrient solution was supplied, EC and inorganic ions content in the extract of substrate was no difference by 22 days after planting. After that, they was rapidly increased with higher concentration of nutrient solution. Number of shoot was highest in EC $1.8dS{\cdot}m^{-1}$ at 2nd growth cycle, 90 days after planting, after that was showed a tendency to increase with increasing nutrient concentration, but was no significant difference among treatment except EC $0.6dS{\cdot}m^{-1}$. Judging by results of growth of rose and contents of inorganic ion in extracts of media, our experiment suggests that the suitable nutrient concentration is EC $1.8dS{\cdot}m^{-1}$ until 90 days and then EC $1.4dS{\cdot}m^{-1}$ until 165 days after planting that is more higher than conventional nutrient concentration for absorption by coir.

Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica

  • Amin, Ruhul;Khair, Abul;Alam, Nuhu;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • Calocybe indica, a tropical edible mushroom, is popular because it has good nutritive value and it can be cultivated commercially. The current investigation was undertaken to determine a suitable substrate and the appropriate thickness of casing materials for the cultivation of C. indica. Optimum mycelial growth was observed in coconut coir substrate. Primordia initiation with the different substrates and casing materials was observed between the 13th and 19th day. The maximum length of stalk was recorded from sugarcane leaf, while diameter of stalk and pileus, and thickness of pileus were found in rice straw substrate. The highest biological and economic yield, and biological efficiency were also obtained in the rice straw substrate. Cow dung and loamy soil, farm-yard manure, loamy soil and sand, and spent oyster mushroom substrates were used as casing materials to evaluate the yield and yield-contributing characteristics of C. indica. The results indicate that the number of effective fruiting bodies, the biological and economic yield, and the biological efficiency were statistically similar all of the casing materials used. The maximum biological efficiency was found in the cow dung and loamy soil casing material. The cow dung and loamy soil (3 cm thick) was the best casing material and the rice straw was the best substrate for the commercial cultivation of C. indica.

Impact of Physicochemical Properties of Root Substrates on Growth of Mother Plants and Occurence of Daughter Plants in 'Seolhyang' Strawberry Propagation through Bag Culture ('설향' 딸기 번식을 위한 자루재배시 상토의 물리·화학성이 모주 생육과 자묘 발생에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Latigui, Ahmed
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • The influence of physicochemical properties of root substrates on the growth of mother plants and occurrence of daughter plants in 'Seolhyang' strawberry propagation were investigated through plastic bag cultivation. Six different formulations of root substrates were coir dust + perlite (5:5, A), coir dust + perlite (6:4, B), coir dust + perlite (7:3, C), coir dust + coconut chip (7:3, D), coir dust + coconut chip (6:4, E), and peatmoss + vermiculite (5:5, v/v; F). The total porosities (TP) and container capacities (CC) of all root substrates were higher than 85% and 55%, respectively, indicating that all substrates were in the acceptable range. But the TP and CC of F substrate were 91.5% and 60%, respectively, which were the highest among the root substrates tested. In the soil chemical properties analyzed before planting and after harvesting of 'Seolhyang' strawberry mother plants, the root substrates of A, B, C, and F had higher electrical conductivity and $NO_3$-N concentrations than those of D and F. The root substrates of A, B, C, and F had heavier runner fresh and dry weights, longer runner lengths, and more daughter plant occurrence than those of D and F. The treatment F had higher tissue N content than any other treatments at 120 days after the transplanting of 'Seolhyang' strawberry and statistical differences were not observed among remained 5 substrates. The treatment of F also had the higher tissue contents of other nutrients except N analyzed at 120 days after transplanting. These results indicated that soil chemical properties rather than physical properties severely influenced the growth of runners and occurrence of daughter plants.

Comparion of Rockwool, Reused Rockwool and Coir Medium on Tomato (Solanum lycopersicum) Growth, Fruit Quality and Productivity in Greenhouse Soilless Culture (시설 내 수경재배에서 암면, 재사용암면, 코이어 배지에 따른 토마토의 생육 및 생산성 비교)

  • An, Cheol Bin;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.175-182
    • /
    • 2021
  • This experiment was conducted to find out the possibility of use of reused rockwool and comparison of growth, productivity and quality of tomatoes according to the use of rockwool and coir medium. The experiment was conducted in an automatic controlled greenhouse at Andong National University, College of Life Science, located in Andong, Gyeongsangbuk-do.. As a result of the experiment, there was no difference in the number of leaves, plant height, and leaf area between treatments, and the crown diameter was slightly higher in rockwool medium, also there was no difference between reused rockwool and coir medium. Fruit productivity showed different responses depending on the cultivation environment, but there was no significant difference between rockwool, reused rockwool and coir medium. In addition, the quality of fruit was observed to be different according to the concentration of EC in the medium. Therefore, in tomato hydroponic cultivation, there was no difference in the type of medium in growth, productivity, fruit quality and the environmental and water management had a great effect, and it is expected that the reuse of rockwool will have a positive effect on the economic point of view.

Changes in soil physical properties of coir dust-mixed substrate as influenced by various filling amounts (용기내 충전량 변화에 따른 코이어 더스트 혼합상토의 물리성 변화)

  • Choi, Jong Myung;Lee, Hee Su
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.203-208
    • /
    • 2013
  • Differences in the filling amount of substrates in container can influence severely on the soil physical properties and crop growth. This research was conducted to secure the fundamental informations related to the changes in soil physical properties as influenced by the filling amount of coir dust-based substrates in container. For the experiment, three substrates were formulated by blending coir dust (CD) with expanded rice hull (CD+ERH, 8:2, v/v), carbonized rice hull (CD+CRH, 6:4, v/v) or ground and aged pine bark (CD+GAPB, 8:2, v/v). Based on the optimum bulk density, the amount of substrates filled in 347.5mL aluminum cylinder were adjusted to 90, 100, 110, 120, and 130%. Then the changes in total porosity (TP), container capacity (CC), and air-filled porosity (AFP) by various filling amounts were measured. The TP decreased linearly in CD+ERH and CD+GAPB and quadratically in CD+CRH as the filling amounts of the media increased from 90% to 130%. The CC in CD+ERH and CD+GAPB media increased as the filling amount increased from 90% to 120%, then decreased in 130%, showing quadratic change. The CC in CD+CRH was the highest in 90% filling amount and decreased gradually as the filling amount of root medea increased. The AFPs in CD+ERH and CD+GAPB media were 38 and 37%, respectively in 90% filling amount and they decreased drastically until 110% filling, then gradually in 120 and 130% filling amount showing the quadratic changes. The AFP of CD+CRH at 90% filling amount was 22% and it decreased as the filling amount increased until 130%, showing linear change. These results indicate that the increase in filling amount of substrates influenced more severely the AFP than CC, and careful consideration on container filling is required to provide a better root condition thus maximize crop growth.