• Title/Summary/Keyword: Coincidence imaging

Search Result 28, Processing Time 0.019 seconds

Development of Geometrical Quality Control Real-time Analysis Program using an Electronic Portal Imaging (전자포탈영상을 이용한 기하학적 정도관리 실시간 분석 프로그램의 개발)

  • Lee, Sang-Rok;Jung, Kyung-Yong;Jang, Min-Sun;Lee, Byung-Gu;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.

  • PDF

Clinical Value of Dual-phase 18F-FDG SPECT with Serum Procalcitonin for Identification of Etiology in Tumor Patients with Fever of Unknown Origin

  • Zhang, Qun;Shan, Chun;Wu, Pei;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.683-686
    • /
    • 2014
  • Objective: The purpose of the study was to evaluate clinical value of dual-phase $^{18}F$-FDG SPECT with serum procalcitonin (PCT) in identifying cancers in patients with fever of unknown origin (FUO). Methods: PCT test and dual-phase $^{18}F$-FDG SPECT were sequentially performed on 50 consecutive patients with FUO. Two radiologists evaluated all $^{18}F$-FDG SPECT data independently. A consensus was reached if any difference of opinions existed. Final diagnosis was based on a comprehensive analysis of results for the PCT test, dual-phase $^{18}F$-FDG SPECT and bacterial cultivation, regarded as a gold standard. Results: Among 50 patients, 34 demonstrated PCT ${\geq}0.5{\mu}g/L$. Coincidence imaging showed in 37 patients with inflammatory lesions, and 13 with malignancy. Finally, 36 bacterial, 1 fungal and 1 viral infections, as well as 12 cancerous fevers were confirmed by dual-phase $^{18}F$-FDG SPECT with PCT, combined with bacterial cultivation and clinical follow-up. Conclusion: Our study demonstrated that dual-phase $^{18}F$-FDG SPECT in association with PCT could be a valuable tool for diagnosis in tumor patients with FUO.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

The useage of the EPID as a QA tools (EPID의 적정관리 도구로서의 유용성에 관한 연구)

  • Cho Jung Hee;Bang Dong Wan;Yoon Seong Ik;Park Jae Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 1999
  • Purpose : The aim of this study is to conform the possibility of the liquid type EPID as a QC tools to clinical indication and of replacement of the film dosimetry. Aditional aim is to describe a procedure for the use of a EPID as a physics calibration tool in the measurements of radiation beam parameters which are typically carried out with film. Method & Materials : In this study we used the Clinac 2100c/d with EPID. This system contains 65536 liquid-filled ion chambers arranged in a $256{\times}256$ matrix and the imaging area is $32.5{\times}32.5cm$ with liquid layer thickness of 1mm. The EPID was tested for different field sizes under typical clinical conditions and pixel values were calibrated against dose by producing images using various thickness of lead attenuators(lead step wedge) using 6 & 10MV x-ray. We placed various thickness of lead on the table of linear accelerator and set the portal vision an SDD of 100cm. To acquire portal image we change the field size and energy, and we recorded the average pixel value in a $3{\times}3$ pixel region of interest(ROI) at field center was recorded. The pixel values were also measured for different field sizes in order to evaluate the dependence of pixel value on x-ray energy spectrum and various scatter components. Result : The EPID, as a whole, was useful as a QA tool and dosimetry device. In mechanical check, cross-hair centering was well matched and the error was less than ?2mm and light/radiation field coincidence was less than 1mm also. In portal dosimetry the wider the field size the the higher the pixel value and as the lead thickness increase, the pixel value was exponentially decreased. Conclusions : The EPID was very suitable for QA tools and it can be used to measure exit dose during patients treatment with reasonable accuracy. But when indicate the EPID to clincal study deep consideration required

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Development of Position Encoding Circuit for a Multi-Anode Position Sensitive Photomultiplier Tube (다중양극 위치민감형 광전자증배관을 위한 위치검출회로 개발)

  • Kwon, Sun-Il;Hong, Seong-Jong;Ito, Mikiko;Yoon, Hyun-Suk;Lee, Geon-Song;Sim, Kwang-Souk;Rhee, June-Tak;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Purpose: The goal of this paper is to present the design and performance of a position encoding circuit for $16{\times}16$ array of position sensitive multi-anode photomultiplier tube for small animal PET scanners. This circuit which reduces the number of readout channels from 256 to 4 channels is based on a charge division method utilizing a resistor array. Materials and Methods: The position encoding circuit was simulated with PSpice before fabrication. The position encoding circuit reads out the signals from H9500 flat panel PMTs (Hamamatsu Photonics K.K., Japan) on which $1.5{\times}1.5{\times}7.0\;mm^3$ $L_{0.9}GSO$ ($Lu_{1.8}Gd_{0.2}SiO_{5}:Ce$) crystals were mounted. For coincidence detection, two different PET modules were used. One PET module consisted of a $29{\times}29\;L_{0.9}GSO$ crystal layer, and the other PET module two $28{\times}28$ and $29{\times}29\;L_{0.9}GSO$ crystal layers which have relative offsets by half a crystal pitch in x- and y-directions. The crystal mapping algorithm was also developed to identify crystals. Results: Each crystal was clearly visible in flood images. The crystal identification capability was enhanced further by changing the values of resistors near the edge of the resistor array. Energy resolutions of individual crystal were about 11.6%(SD 1.6). The flood images were segmented well with the proposed crystal mapping algorithm. Conclusion: The position encoding circuit resulted in a clear separation of crystals and sufficient energy resolutions with H9500 flat-panel PMT and $L_{0.9}GSO$ crystals. This circuit is good enough for use in small animal PET scanners.