• 제목/요약/키워드: Coincidence imaging

검색결과 28건 처리시간 0.023초

고전 상관관계를 갖는 두 빛을 이용한 고스트 이미징 (Ghost Imaging With Classically Correlated Beams)

  • 배삼용;윤선현
    • 한국광학회지
    • /
    • 제16권6호
    • /
    • pp.481-484
    • /
    • 2005
  • 빛의 양자역학적 성질인 얽힘(entanglement)을 이용한 양자 고스트 이미징(quantum ghost imaging)은 고전적인 동시계수 측정(classical coincidence measurement)에 의해서도 정성적으로 재현됨이 알려져 있다[1,2]. 본 실험에서는 진행방향에서 고전적인 상관관계를 가지는 빛을 이용하여 고전 동시계수 이미징(classical coincidence imaging) 실험을 수행하여 양자역학적 얽힘 상태에서 볼 수 있는 현상들을 관측하고 고스트 이미지가 나오는 원리를 분석하였다. 고전적인 상관관계를 가지는 광원은 아르곤이온 레이저에서 나오는 빛의 경로를 스피커에 부착되어 회전하는 거울에 반사시켜 진행방향에 대해 상관관계를 가지도록 만들어 사용하였다.

Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma

  • Yuanlong Zhang;Hongliang Ge;Mingxia Xu;Wenzhong Mei
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권2호
    • /
    • pp.183-189
    • /
    • 2023
  • Objective : The facial nerve trace on the ipsilateral side of the vestibular schwannoma was reconstructed by diffusion tensor imaging tractography to identify the adjacent relationship between the facial nerve and the tumor, and to improve the level of intraoperative facial nerve protection. Methods : The clinical data of 30 cases of unilateral vestibular schwannoma who underwent tumor resection via retrosigmoid approach were collected between January 2019 and December 2020. All cases underwent magnetic resonance imaging examination before operation. Diffusion tensor imaging and anatomical images were used to reconstruct the facial nerve track of the affected side, so as to predict the course of the nerve and its adjacent relationship with the tumor, to compare the actual trace of the facial nerve during operation, verify the degree of coincidence, and evaluate the nerve function (House-Brackmann grade) after surgery. Results : The facial nerve of 27 out of 30 cases could be displayed by diffusion tensor imaging tractography, and the tracking rate was 90% (27/30). The intraoperative locations of facial nerve shown in 25 cases were consistent with the preoperative reconstruction results. The coincidence rate was 92.6% (25/27). The facial nerves were located on the anterior middle part of the tumor in 14 cases, anterior upper part in eight cases, anterior lower part in seven cases, and superior polar in one case. Intraoperative facial nerve anatomy was preserved in 30 cases. Among the 30 patients, total resection was performed in 28 cases and subtotal resection in two cases. The facial nerve function was evaluated 2 weeks after operation, and the results showed grade I in 12 cases, grade II in 16 cases and grade III in two cases. Conclusion : Preoperative diffusion tensor imaging tractography can clearly show the trajectory and adjacent position of the facial nerve on the side of vestibular schwannoma, which is beneficial to accurately identify and effectively protect the facial nerve during the operation, and is worthy of clinical application and promotion.

종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교 (F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET)

  • 배문선;박찬희;조철우;윤석남;양승대;임상무
    • 대한핵의학회지
    • /
    • 제33권1호
    • /
    • pp.65-75
    • /
    • 1999
  • 목적: 종양 환자의 평가에 있어서 초고에너지 조준기를 장착하여 511 keV에 적용시킨 감마카메라로 FDG 전신 평면 영상(FDG W/B scan)을 얻어 충분한 정보를 얻을 수 있는지 알아보고 동시에 같은 카메라로 동시계수 회로를 이용한 양전자 방출 단층촬영(FDG CoDe PET)을 실시하여 그 결과를 비교하였다. 대상 및 방법: F-18 FDG를 이용하여 초고에너지 조준기와 동시계수 양전자 방출영상에 대해 각각 팬텀 실험을 실시하였고, 악성종양이 의심되거나 진단된 환자 14명을 대상으로 FDG 전신 평면 영상과 양전자 방출 단층 영상을 얻어 방사선학적 검사, 임상적 추적관찰, 조직학적 검사 등과 비교하였다. 결과: 평면 영상에서는 해상력 13.1 mm, 민감도 2638 cpm/MBq/ml, 동시계수 영상에서는 공간 해상력 7.49 mm, 민감도 5351 cpm/MBq/ml로 측정되었다. FDG CoDe PET에서 14명의 환자 중 8명에서 FDG의 섭취가 있었다. 두 방법 모두에서 FDG 섭취가 없었던 병변은 모두 CT에서 1 cm 이하 였으나 한 예에서 2 cm 크기의 전이성 림프절을 찾지 못하였다. FDG 섭취를 보였던 병변은 모두 CT상 1.5cm 이상이거나 여러 개가 모여 있는 병변이었다. FDG W/B scan은 FDG CoDe PET와 거의 비슷한 결과를 보였으나 위음성과 위양성이 1예씩 더 있었다. FDG CoDe PET에서 보였던 다수의 폐 결절과 간 결절들이 FDG W/B scan에서 한 예를 제외하고는 모두 발견되었다. 결론: 감마카메라에 의한 FDG 영상들은 악성 종양의 감별, 병기 결정, 추적검사 등에 유용하게 쓰일 수 있을 것으로 간주되며, SPECT 카메라가 널리 보급되어 있으므로 FDG 전신 평면영상과 동시계수 양전자 방출영상은 서로 보완적으로 쓰이면서 FDG의 지역 분배 공급을 통해 기존의 PET를 대신하여 FDG를 이용한 더 많은 임상적 이용 및 영상진단을 가능하게 할 것이다.

  • PDF

핵의학 영상의 물리적 인공산물보정: 정규화보정 및 감쇠보정 (Physical Artifact Correction in Nuclear Medicine Imaging: Normalization and Attenuation Correction)

  • 김진수;이재성;천기정
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.112-117
    • /
    • 2008
  • Artifact corrections including normalization and attenuation correction were important for quantitative analysis in Nuclear Medicine Imaging. Normalization is the process of ensuring that all lines of response joining detectors in coincidence have the same effective sensitivity. Failure to account for variations in LOR sensitivity leads to bias and high-frequency artifacts in the reconstructed images. Attenuation correction is the process of the correction of attenuation phenomenon lies in the natural property that photons emitted by the radiopharmaceutical will interact with tissue and other materials as they pass through the body. In this paper, we will review the several approaches for normalization and attenuation correction strategies.

Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs

  • Ramesh, Aruna;Soroushian, Sheila;Ganguly, Rumpa
    • Imaging Science in Dentistry
    • /
    • 제43권4호
    • /
    • pp.235-243
    • /
    • 2013
  • Purpose: This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. Materials and Methods: One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. Results: There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, "With CCAP" and "Without CCAP", there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. Conclusion: This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.

Optimized TOF-PET detector using scintillation crystal array for brain imaging

  • Leem, Hyuntae;Choi, Yong;Jung, Jiwoong;Park, Kuntai;Kim, Yeonkyeong;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2592-2598
    • /
    • 2022
  • Research groups in the field of PET instrumentation are studying time-of-flight(TOF) technology to improve the signal-to-noise ratio of PET images. Scintillation light transport and collection plays an important role in improving the coincidence resolving time(CRT) of PET detector based on a pixelated crystal array. Four crystal arrays were designed by the different optical reflection configuration such as external reflectors and surface treatment on the CRT and compared with the light output, energy resolution and CRT. The design proposed in the study was composed of 8 × 8 LYSO crystal array consisted of 3 × 3 × 15 mm3 pixels. The entrance side was roughened while the other five surfaces were polished. Four sides of all crystal pixels were wrapped with ESR-film, and the entrance surface was covered by Teflon-tape. The design provided an excellent timing resolution of 210 ps and improved the CRT by 16% compared to the conventional method using a polishing treatment and ESR-film. This study provided a method for improving the light output and CRT of a pixelated scintillation crystal-based brain TOF PET detector. The proposed configuration might be an attractive detector design for TOF brain PET requiring fast timing performance with high cost-effectiveness.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.