• Title/Summary/Keyword: Coils

Search Result 1,148, Processing Time 0.023 seconds

A Study on the Forming Process Development of a Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • Choe, Gan-Dae;Gang, U-Jin;Bae, Won-Byeong;Jo, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.212-219
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. Now the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some defects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical forming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions for forming a long-neck flange are simulated by FE analyses with a commercial code DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion for forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any defects.

Inductive Micro Thin Film Sensor for Metallic Surface Crack Detection (금속 표면결함 검출용 자기유도 마이크로 박막 센서)

  • Kim, Ki-Hyeon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.395-400
    • /
    • 2008
  • Alternating magnetic field was used for detection of surface flaws on nonmagnetic and magnetic metallic specimens. The nondestructive sensor probe was composed of the planar coil with inductive magnetic thin film yoke as a sensing component and a single straight typed exciting coil. The planar inductive coil sensor with magnetic yoke was fabricated by sputtering, electroplating, dry etching and photolithography process. The alternative currents with the range of 0.1A to 1.0A (0.7 MHz to 1.8 MHz) were applied to the exciting coil. The specimens were prepared with the slit shaped artificial surface flaws (minimum depth and width; 0.5 mm) on metallic plate (Al; nonmagnetic metal and FeC; magnetic metal). The detected signal for the positions and shapes of surface flaws on specimens were obtained with high sensitivity and high signal to ratio. The measured output signals by the non-contacted scanning on surface of FeC specimen with micron-sized crack were converted to the images of the flaws. And these results were compared with the optical images, respectively.

Effect of Plasma Density on the Tribological Properties of Amorphous Carbon Thin Films (비정질 탄소박막의 트라이볼로지 특성에 미치는 플라즈마 밀도의 영향)

  • Park, Y.S.;Lee, J.D.;Hong, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • In this work, we have fabricated the amorphous carbon (a-C:H) thin film by using unbalanced magnetron sputtering method with the magnetron source of inside/outside electromagnetic coils as the protective coating materials. We have investigated the tribological properties of amorphous carbon films prepared with various electromagnetic coil currents for the change of the plasma density, such as hardness, friction coefficient, adhesion, and surface roughness. Raman and HRTEM were used to study the microstructure of carbon films. In the result, the hardness and adhesion properties of a-C:H films were improved with increasing electromagnetic coil current due to the increase of the plasma density to the substrate. Thus, these results can be explained by the increase of $sp^2$ bonding and cluster number in the amorphous carbon film, related to the improved bombardment around substrate and the increased substrate temperature.

Structural and Molecular Characterization of Extracellular Polysaccharides Produced by a New Fungal Strain, Trichoderma erinaceum DG-312

  • JOO JI-HOON;YUN JONG-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1250-1257
    • /
    • 2005
  • Two groups of exopolysaccharides (designated as Fr-I EPS and Fr-II EPS) were isolated from the culture filtrate of new fungal strain Trichoderma erinaceum DG-312 by Sepharose CL-6B chromatography. The structures of the exopolysaccharides were investigated using gas chromatography (GC), Fourier transform-infrared (FT-IR) spectroscopy, GCMS analysis, and NMR. GC analysis indicated that Fr-I EPS was composed of mainly mannose ($78.9\%$) and galactose ($21.1\%$), whereas Fr-II EPS contained mannose ($68.4\%$), galactose ($26.2\%$), and glucose ($5.4\%$). In the anomeric region ($950-700cm_{-1}$) of the FT-IR spectrum, both EPSs exhibited obvious characteristic absorption of $810\;cm_{-1}$, indicating the existence of mannose. The spectra of $\alpha-and\;\beta$-configurations were assigned at 880 and $914\;cm_{-1}$, respectively. The results of GC-MS analyses confirmed that both EPSs were complex heteropolysaccharides with a ($1{\rightarrow}3$)-linked mannan backbone. The C-1 region that appeared in the $^{13}C-NMR$ spectra of these EPSs indicated a typical anomeric carbon signal. The Fr-I EPS showed two anomeric carbon signals at 102.6 and 99.6 ppm, whereas the Fr-II EPS displayed four anomeric carbon signals at 102.5, 99.6, 98.5, and 94.3 ppm. The molecular characteristics of the EPSs were further investigated using a size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS) system. The SEC/MALLS system revealed that the average molar masses of the EPSs were $6.592{\times}10^{4}$ (Fr-I EPS) and $1.920{\times}10^{4}$ (Fr-II EPS) g/mol, and the molecular conformation of both EPSs in aqueous solution was random coils.

Implementation of a Transcutaneous Power Transmission System for Implantable Medical Devices by Resonant Frequency Tracking Method (주파수 추적 방식에 의한 이식형 의료기기용 무선전력전달 장치 구현)

  • Lim, H.G.;Lee, J.W.;Kim, D.W.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.401-406
    • /
    • 2010
  • Recently, many implantable medical devices have been developed and manufactured in many countries. In these devices, generally, energy is supplied by a transcutaneous method to avoid the skin penetration due to the power wires. As the most transcutaneous power transmission methods, the electromagnetic coupling between two coils and resonance at a specific frequency has been used widely. However, in case of a transcutaneous power transmitter with a fixed switching frequency to drive an electromagnetic coil, inefficient power transmission and thermal damage by the undesirable current variation may occur, because the electromagnetic coupling state between a primary coil and a secondary coil is very sensitive to skin thickness of each applied position and by person. In order to overcome these defects, a transcutaneous power transmitter of which operating frequency can be automatically tracked into the resonance frequency at each environment has been designed and implemented. Through the results of experiments for different coil surroundings, we have been demonstrated that the implemented transcutaneous power transmitter can track automatically into a varied resonance frequency according to arbitrary skin thickness change.

Characteristic Analysis of Inductive Power Transfer System for PRT (소형궤도 열차용 유도 전력 전송 시스템 특성해석)

  • Min, Byung-Hun;Lee, Byung-Song
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.35-43
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and son ideas for power collector design to improve tile power transfer performance are presented. And also, the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency is shown. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system electrical power is transferred from a primary winding in the form of a coil or tract to one or more isolated pick-up coils that my relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, we will show you various characteristic of inductive power transfer system as double layer construction of secondary winding, which was divided in half to increase both output current and output voltage, a model of power collector and parallel winding structure, a model of concentration/ decentralization winding and the effects of parameter and operational frequency variation.

Use of an Amplatzer Vascular Plug to occlude a tubular type of patent ductus arteriosus (원통형 모양 동맥관의 경피적 폐쇄술에서의 Amplatzer Vascular Plug 의 사용)

  • Choi, Eun-Young;Jang, So-Ick;Kim, Soo-Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.9
    • /
    • pp.1035-1037
    • /
    • 2009
  • Patent ductus arteriosus (PDA) is a common congenital heart defect. All PDAs, regardless of size or degree of symptoms, require occlusion. Transcatheter PDA occlusion features fewer complications than trans-thoracic closure. It is also more cost-effective and has an excellent occlusion rate. Therefore, transcatheter PDA occlusion is accepted as the standard treatment option for PDA. However, tubular-type PDAs are difficult to close with ordinary detachable coils or the Amplatzer Duct Occluder; thus, these lesions remain a challenge for transcatheter closure. We attempted to occlude a tubular-type PDA by using an oversized Amplatzer Vascular Plug, which allowed intraluminal packing of the ductus. By using this treatment method, PDA occlusion was achieved safely with an excellent final outcome. We suggest that this approach may be a good option for transcatheter closure of a tubular-type PDA.

Selective embolization of the internal iliac arteries for the treatment of intractable hemorrhage in children with malignancies

  • Bae, Sul-Hee;Han, Dong-Kyun;Baek, Hee-Jo;Park, Sun-Ju;Chang, Nam-Kyu;Kook, Hoon;Hwang, Tai-Ju
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.4
    • /
    • pp.169-175
    • /
    • 2011
  • Purpose: Acute internal hemorrhage is an occasionally life-threatening complication in pediatric cancer patients. Many therapeutic approaches have been used to control bleeding with various degrees of success. In this study, we evaluated the efficacy of selective internal iliac artery embolization for controlling acute intractable bleeding in children with malignancies. Methods: We retrospectively evaluated the cases of 6 children with various malignancies (acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, T-cell prolymphocytic leukemia, Langerhans cell histiocytosis, and rhabdomyosarcoma), who had undergone selective arterial embolization (SAE) of the internal iliac artery at the Chonnam National University Hwasun Hospital between January 2004 and December 2009. SAE was performed by an interventional radiologist using Gelfoam$^{(R)}$ and/or Tornado$^{(R)}$ coils. Results: The patients were 5 boys and 1 girl with median age of 6.9 years (range, 0.7-14.8 years) at the time of SAE. SAE was performed once in 4 patients and twice in 2, and the procedure was unilateral in 2 and bilateral in 4. The causes of hemorrhage were as follows: hemorrhagic cystitis (HC) in 3 patients, procedure-related internal iliac artery injuries in 2 patients, and tumor rupture in 1 patient. Initial attempt at conservative management was unsuccessful. Of the 6 patients, 5 (83.3%) showed improvement after SAE without complications. Conclusion: SAE may be a safe and effective procedure for controlling acute intractable hemorrhage in pediatric malignancy patients. This procedure may obviate the need for surgery, which carries an attendant risk of morbidity and mortality in cancer patients with critical conditions.

Simulation study of magnetorheological testing cell design by incorporating all basic operating modes

  • Mughni, Mohd J.;Mazlan, Saiful A.;Zamzuri, Hairi;Yazid, Izyan I.M.;Rahman, Mohd A.A.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.901-916
    • /
    • 2014
  • Magnetorheological (MR) fluid is one of the field-responsive fluids that is of interest to many researchers due to its high yield stress value, which depends on the magnetic field strength. Similar to electrorheological (ER) fluid, the combination of working modes is one of the techniques to increase the performance of the fluids with limited focus on MR fluids. In this paper, a novel MR testing cell incorporated with valve, shear and squeeze operational modes is designed and constructed in order to investigate the behaviour of MR fluid in combined mode. The magnetic field distribution in the design concept was analyzed using finite element method in order to verify the effective areas of each mode have the acceptable range of flux density. The annular gap of valve and shear were fixed at 1 mm, while the squeeze gap between the parallel circular surfaces was varied up to 20 mm. Three different coil configurations, which were made up from 23 SWG copper wires were set up in the MR cell. The simulation results indicated that the magnetic field distributed in the squeeze gap was the highest among the other gaps with all coils were subjected to a constant applied current of 1 A. Moreover, the magnetic flux densities in all gaps were in a good range of magnitude based on the simulations that validated the proposed design concept. Hence, the 3D model of the MR testing cell was designed using Solidworks for manufacturing processes.

The method of alignment detection between Tx and Rx set in wireless inductive charger (유도방식 무선충전기용 송수신 장치간 정렬상태 검출기법)

  • Lee, Sang Gon;Kim, Jae Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.90-96
    • /
    • 2014
  • This paper is about increasing transfer efficiency of wireless power transmission. The new method is proposed to detect the alignment of transmitter and receiver of wireless charger and so smart phone can display the position of wireless charging receiver on its LCD panel for the maximum charging efficiency. The previous method is only to show the transfer efficiency, but this method is to show not only the efficiency but also coordinates of receiver. The apparatus of the wireless charger is based on WPC(Wireless Power Consortium) standard and has planar air coil combined with magnet shield in Tx and Rx device so that the leakage flux is minimized on condition of under hundreds of kHz operating frequency. In this paper, it's showed that relation of magnet field and distance of each coils can be linearized and position information of Tx and Rx device is calculated thru trigonometry. Through the experiment, the obstacles of linearity are discovered and also showed that it can be optimized. and so the presented method is suitable for alignment detection method of Tx and Rx device in WPC wireless charger.