• 제목/요약/키워드: Coil Temperature Rise

검색결과 35건 처리시간 0.033초

여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구 (The effects of various thermal parameters on coil temperature rise in TEFC induction motor)

  • 윤명근;하경표;이양수;고상근;한송엽
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

풍력발전기 Air Guide 위치별 온도상승 해석 (Analysis of Temperature Rise on the Air-Guide's Position of Wind Power Generator)

  • 한창우;김현재;권기영;이학성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.282-285
    • /
    • 2008
  • In this paper, the numerical analysis of the model without air-guide was carried out in wind power generator. From numerical results, the temperature rise was not satisfied for the class F insulation and the non-uniformity of temperature distribution was a wide difference in heating elements. To improve these problems, the air-guide was installed in front of the coil head of non-drive end(NDE). The short distance between coil head and air-guide was more effective than long distance in cooling performance. Compared to that of the preliminary design, it was found that the cooling performance of the modification design was improved about 12%.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.

주상용 몰드변압기의 온도분포 해석과 온도상승 시험 (The Temperature Distribution Analysis and Temperature Rise Test of Pole Mold Transformer)

  • 조한구;이운용;김석수;이종득
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.780-782
    • /
    • 2001
  • The mold transformer has anti-burnt and possibility of small size contrary to oil-immersed transformer. The mold transformer has generally cooling duct between low voltage coil and high voltage coil and also made by one body molding for small size and low loss. In this paper, the temperature distribution of designed 50kVA pole mold transformer for power distribution is investigated by FEM program. The designed transformer is also manufactured and temperature rise test is carried out.

  • PDF

50 kVA 주상용 몰드변압기의 설계 및 특성평가 (The Design and Performance Test of Mold Transformer for Outdoor Pole)

  • 조한구;이운용;황보국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

전력용 고온초전도 코일 모의전극계에서의 기포거동에 관한 연구 (Study on Bubble Behavior with the Simulated Electrode System of High Temperature Superconducting Coils for Electric Power System)

  • 석복렬;김종구
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2001
  • Bubble behavior is studied with an electrode system which consists of coaxial spiral coil-to-cylindrical electrode with an insulation barrier and spacers and is immersed in liquid nitrogen for simulation of insulation environments in high temperature superconducting(HTS) coils The results show that the bubble behavior Is affected severely by electric field: (1) under low applied voltage bubbles rise by buoyancy, but at higher applied voltage they are trapped in a lower electric field region below the coil electrode, and (2) the trapped bubble flows along the downside of coil electrode if no obstruction is in a groove between coil turns. but it splashes out of the groove after its growing if the obstruction such as spacer-exists.

  • PDF

13.2kV/630A급 고온초전도 한류코일 개발 (Development of 13.2kV/630A High-Tc Superconducting Fault Current Limiting Coil)

  • 이찬주;강형구;남관우;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.943-944
    • /
    • 2007
  • In this paper, the development and the test of 13.2kV/630A high-Tc superconducting fault current limiting coil are described. The fault current limiting coil made of Coated Conductor (CC) was fabricated with bifilar winding method for non-inductive characteristics and tested in the distribution power system level in Dec. 2006. In order to determine the length of the superconducting coil, applied voltage per unit length(V/m) was studied analytically and it was verified through experiments. For the volume minimization, the coil was designed with concentrical arrangement method. The short-circuit test was performed with the prospective fault current of asymmetrical 10kA whose maximum fault current was $30kA_{peak}$. In the test, the voltage drop and the current of the coil were measured and the resistance of the coil was obtained. Also, the temperature rise of the coil was calculated with the relationship between the resistance and the temperature of CC. In this paper, the experimental results are analyzed and compared with the simulation.

  • PDF

식물성 절연유와 광유가 사용된 유입변압기의 온도분포 특성 (Analysis on the Temperature Distribution Characteristics of Insulating oil of Transformer Using the Vegetable oil and Mineral oil)

  • 안정식;심명섭;정중일;김남렬;허창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1215_1216
    • /
    • 2009
  • Most transformer use insulating and cooling fluids derived from petroleum crude oil, but mineral oil is some possibility of environmental pollution and fire with explosion. vegetable oil fluids extracted from seed has superior biodegradation and fire-resistant properties including an exceptionally high fire point enhancing fire safety. In this study, it is aimed at the practicality of substituting natural ester dielectric fluid for mineral oil in liquid insulation system of transformers. As a rise in coil winding temperature has a direct influence on transformer life time, it is important to evaluate the temperature rise of coil winding in vegetable oil in comparison with mineral oil. Three transformers for the test are designed with 10KVA, 13.2KV, one phase unit. The temperature are directly measured in insulating oil of these transformers with the two sorts of natural ester and mineral oil dielectric fluid respectively. Temperature of vegetable oil transformers was similar to temperature of mineral oil transformer in the same design at 80% load and above.

  • PDF

상업지역내 건물 사이 공간에 설치된 실외기 주변 열 환경 분석 (Thermal Environment Around the Outdoor Unit Installed in the Space between Buildings in the Commercial Area)

  • 신학종;곽인규;문선혜;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.19-27
    • /
    • 2019
  • In commercial areas, outdoor units are typically installed close to one another in the narrow space between buildings due to insufficient regulations. This makes it difficult to ventilate the discharge airflow, which may lead to deterioration of the performance of outdoor units. This study conducted CFD simulation to analyze the thermal environment according to the installation distance of the outdoor unit. The outdoor unit was installed in the space between buildings, and the thermal environment was analyzed by changing installation distance and wind speed. The performance of the outdoor unit was evaluated by measuring the on-coil temperature. The results show that the closer the distance between outdoor units, the higher the condenser on-coil temperature. Also, the on-coil temperature appeared to rise dramatically at lower wind speed.

전폐형 유도전동기의 온도분포에 관한 수치 및 실험적 해석 (Numerical and experimental analysis of temperature distribution in TEFC induction motor)

  • 윤명근;고상근;한송엽;이양수
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.457-472
    • /
    • 1997
  • We studied the temperature distribution and heat transfer characteristics of TEFC induction motor with thermal network program for more efficient design and better cooling performance of it. We knew the characteristics and the windage loss of outer cooling fan from fan test experiments. Frame axial and peripheral heat transfer coefficients and endwinding heat transfer coefficient were measured by various model experiments and then, compared with other experimental results. Frame was the main heat transfer surface, load-side and fan-side surface were not thermally symmetric from the heat flux distribution analysis. Steady and unsteady temperature distributions were measured by real motor experiments. From the results, we knew that rotor surface temperature was higher than coil temperature and the hottest spot in the coil was loadside endwinding outside surface. We compared the simulation results with those of real motor test and the two results showed a good agreement.