• Title/Summary/Keyword: Coil Sensor Signal

Search Result 73, Processing Time 0.024 seconds

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.

Design of radiation detection circuit for gamma column scanning (자동 감마 증류탑 검사 장치를 위한 방사선 계측장치 설계)

  • Kim, Jong-Beom;Jeong, Seong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.612-615
    • /
    • 2003
  • In this paper, a design of radiation detector for gamma column scanner is introduced. Distillation column is important unit in Petro-chemical industries, and its on-line diagnose is very important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose as gamma scanning. For this purpose radiation detection circuit, radiation source and mechanical system for moving source and detector are required. Conventional radiation detection circuit for this application is sensitive to electric noise because of interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using loop coil instead of slip ring to remove contact noise. Radiation detection system designed here for gamma scanning consist of BGO detector, high voltage circuit, PHA circuit and FSK modem. The BGO detector is used as radiation sensor, high voltage circuit and peak height analysis circuit is essential to process the signal generated from BGO detector. Micro controller convert measured data into ASCII data. FSK modem transmit ASCII data. Transmitted ASCH data is picked up in antenna coil and processed for combined function with mechanical system. This method gives good result by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  • PDF

MUSIC-based Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors Using Flux Signal

  • Youn, Young-Woo;Yi, Sang-Hwa;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.288-294
    • /
    • 2013
  • The diagnosis of motor failures using an on-line method has been the aim of many researchers and studies. Several spectral analysis techniques have been developed and are used to facilitate on-line diagnosis methods in industry. This paper discusses the first application of a motor flux spectral analysis to the identification of broken rotor bar (BRB) faults in induction motors using a multiple signal classification (MUSIC) technique as an on-line diagnosis method. The proposed method measures the leakage flux in the radial direction using a radial flux sensor which is designed as a search coil and is installed between stator slots. The MUSIC technique, which requires fewer number of data samples and has a higher detection accuracy than the traditional fast Fourier transform (FFT) method, then calculates the motor load condition and extracts any abnormal signals related to motor failures in order to identify BRB faults. Experimental results clearly demonstrate that the proposed method is a promising candidate for an on-line diagnosis method to detect motor failures.

Design of a Shielded Reflection Type Pulsed Eddy Current Probe for the Evaluation of Thickness (두께 평가를 위한 차폐된 반사형 펄스 와전류 탐촉자의 설계)

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.398-408
    • /
    • 2007
  • For better evaluation of material thickness by using the reflection type pulsed eddy current method, various probe models are designed and their response signals, characteristics, and sensitivities to thickness variation are investigated by a numerical analysis method. Since the sensor needs to detect magnetic fields from eddy currents induced in a test material, not from the exciter coil, two types of models that are shielded by the combination of copper and ferrite and only by ferrite are considered. By studying response signals from these shielded probe models, the peak value and the zero crossing time are selected as useful signal features for the evaluation of material thickness. Investigation of sensitivities of these two features shows that the sensitivity of peak value is more useful than that of zero crossing time and that the probe shielded only by ferrite gives much better sensitivity to thickness variation.

Application and Design of Eddy Current based on FEM for NDE Inspection of Surface Cracks with Micro Class in Vehicular Parts (자동차부품의 마이크로급 표면크랙 탐상을 위한 FEM 를 기반한 와전류 센서 디자인 및 적용)

  • Im, Kwang-Hee;Lee, Seul-Ki;Kim, Hak-Joon;Song, Sing-Jin;Woo, Yong-Deuk;Na, Sung-Woo;Hwang, Woo-Chae;Lee, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.529-536
    • /
    • 2015
  • A defect could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size, applied frequency were calculated based on the simulation results. Simulations were carried out for the defect signal of eddy current probe. Exciter and receiver were utilized. In this paper, the FEM simulations were performed in both bobbin-type and pancake-type probe, both probes were optimized under Eddy current FEM simulations and the results of calculation were discussed.

Ring-Shaped Inductive Sensor Design and Application to Pressure Sensing (환형 인덕티브 센서의 설계 및 압력센서로의 적용)

  • Noh, Myounggyu;Kim, Sunyoung;Baek, Seongki;Park, Young-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.995-999
    • /
    • 2015
  • Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

Development of a Measuring Instrument of Current and Voltage on Power-Transmission Lines for the Construction of Energy-Network

  • Park, Kyi-Hwan;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.2-107
    • /
    • 2001
  • We propose portable equipment that monitors a current and potential on high-potential power transmission lines. In the equipment, a current and voltage sensor are attached to a hollow insulator that supports a power transmission line: A current on a power line is detected by an air-core solenoidal coil clamped to the line and the detected current signal is transmitted to the ground station by using optical data link, A potential on a power transmission line is detected by a high resistance element, zinc oxide (ZnO) that acts as a potential divider between the power line and the ground. The equipment does not require high potential insulators and magnetic cores which. This leads to the following advantages of the equipment: (a) It is easily installed owing to its small size and its simple structure; (b) It operates in low ...

  • PDF

Designs and Fabrications of High-TC SQUID Magnetometer for Measuring a Weak Signal without Magnetic Shielding (비자기 차폐환경에서 미세자기신호 측정을 위한 고온 초전도 SQUID 자력계의 설계 및 제작)

  • Yu, K.K.;Kim, I.S.;Park, Y.K.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.110-113
    • /
    • 2004
  • We have designed and fabricated the YBCO single layer directly-coupled SQUID magnetometers for the purpose of magnetocardiography in a magnetically disturbed environment. The SQUID magnetometers were designed three different types of pickup coil such as solid type, PL type I and PL type II for further stable fluxed-locked-loop operation without magnetic shielding. Magnetometer was fabricated with a single layer YBCO thin film deposited on STO(100) bicrystal substrate with misorientation angle of $30^{\circ}$. We have achieved a magnetic field noise BN of 30 fT/$Hz^{1/2}$ at 100 Hz, and less than 70 fT/$Hz^{1/2}$ at 1 Hz. The PL type II SQUIDs have exhibited the most stable fluxed-locked-loop operation in a magnetically unshielded environment.

A Newly Designed Contact Profiler for Microstructure (새로운 구조의 접촉식 미세구조 프로필러)

  • Choi, Dong-Jun;Choi, Jai-Seong;Choi, In-Mook;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2002
  • A simple and low cost stylus profiler made of ferrite cores is developed. The devised profiler consists of a contact probe, a measuring transducer, a signal processing unit, and a motorized stage. The contact probe attached to 4-bar spring maintains sufficient stiffness to protect disturbances. An overlap-area type inductive position sensing system is selected as a measuring transducer, which has high sensitivity, repeatability and linearity. The transducer is composed of coil bundles and ferrite cores which have good electromagnetic characteristics in spite of low cost. The repeatability of the profiler with the proposed inductive sensing system is better than 50nm. Experimental results are shown that the proposed profiler can measure the line or 3D profile of an object with sub-micron features.

Design of High Efficiency Differential Electromagnetic Type Transducer for Implantable Middle Ear System (이식형 인공중이 시스템을 위한 고효율 차동 전자 트랜스듀서의 설계)

  • Song, Byung-Seop;Ro, Chul-Kyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.171-182
    • /
    • 2002
  • The differential electromagnetic transducer for IME(implantable middle ear) system, which have two small permanent magnets glued with the same pole facing each other in the coil, has high vibration efficiency and does not influenced by external magnetic field. In this paper, using finite element method, highly efficient structure of the transducer was proposed and vibration force of the transducer was calculated by electromagnetic theory. And the necessary vibration force of transducer to transmit the sound signal to inner ear when the transducer is attached at stapes was calculated and the design parameters of the transducer were investigated. Using the parameters, the differential electromagnetic transducer was manufactured in small size to implant in confined human middle ear. And it was examined by unloaded and loaded vibration experiment using temporal bone sampled from cadaver.