• Title/Summary/Keyword: Coil Design

Search Result 1,002, Processing Time 0.026 seconds

Design of Alternating Magnetic Field Stimulator Using Duty Factor

  • Jang, Tae-Sun;Lee, Jin-Yong;Lee, Hyun-Sook;Kim, Sun-Wook;Hwang, Do-Guwn
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.42-45
    • /
    • 2012
  • We have developed an alternating magnetic field stimulation system consisting of a switched-mode power supply and a digital control circuit which modulates a duty ratio to maintain a magnetic field intensity of a few mT even while the frequency increases up to 4 kHz with a controllable coil temperature below $30^{\circ}C$ in air. This duty ratio modulation and water circulation are advantageous for cell culture under ac-magnetic field stimulation by preventing the incubator from exceeding a cell-viable temperature of $37^{\circ}C$. Although the temperature of the coil when subjected to a sinusoidal voltage rapidly increased, that of our system modulated by the duty factor did not change. This is a potentially valuable method to investigate the effects of intermediate frequency magnetic field stimulation on biological entities such as cells, tissues and organs.

Implementation of permanent Magnetic Repulsion Type of Magnetic Levitation Table Using One Degree-of-freedom Active Control (1 자유도 능동제어에 의한 영구자석 반발형 자기부상 테이블의 구현)

  • Jo, Yeong-Geun;Choe, Gi-Bong;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.125-132
    • /
    • 2002
  • This paper shows an experimental magnetic levitation table using one degree-of-freedom active control. The magnetic levitation table using repulsions of permanent magnets was theoretically presented already. Thus the objective of this paper is to prove stable levitation with only one degree-of-freedom active control experimentally. For the design of the system, at first, permanent magnets are selected. Secondly, the spring constants of the virtual spring are obtained by simulation. Thirdly, the moving magnets are arranged using a stable layout relation. Fourthly, a linear voice coil motor is designed. Finally, the magnetic levitation system is manufactured. The phenomenon of stable levitation in the manufactured table is proven by means of dynamic time and frequency responses. The differences between the theoretical natural frequencies and experimental ones are analyzed. Also, stable range in the control direction is shown experimentally.

Design of The Dual-band Resonator for Magnetic Resonance Wireless Power Transfer (자기공진방식 이중대역 무선전력전송 공진기 설계)

  • Yoon, Nanae;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.41-45
    • /
    • 2015
  • In this paper, the single port dual-band resonator for magnetic resonance wireless power transfer is proposed. The proposed dual-band resonator is consists of 20 turns spiral coil, a single loop, matching circuit, lumped elements, and a single port. The two sides of the matching circuit are connected to via holes. The spiral coil is operated at MF-band and single loop is operated at HF-band, respectively. We use two of the same structure resonators and simulated and the power transfer efficiency was calculated. The efficiency of simulation and measurement is above 60% at the MF and HF bands, and the distance is 100 mm.

Analysis of Half-coiled Short-pitch Windings with Different Phase Belt for Multiphase Bearingless Motor

  • Li, Bingnan;Huang, Jin;Kong, Wubin;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.162-169
    • /
    • 2014
  • The analysis and comparation of the half-coiled short-pitch windings with different phase belt are presented in the paper. The half-coiled short-pitch windings can supply the odd and even harmonics simultaneously, which can be applied in multiphase bearingless motor (MBLM). The space harmonic distribution of the half-coiled short-pitch windings with two kinds of phase belt is studied wi th respect to different coil pitch, and the suitable coil pitch can be selected from the analysis results to reduce the additional radial force and torque pulse. The two kinds of half-coiled short-pitch windings are applied to the five- and six-phase bearingless motor, and the comparation from the Finite Element Method (FEM) results shows that the winding with $2{\pi}/m$ phase belt is fit for the five phase bearingless motor and the winding with ${\pi}/m$ phase belt is suitable for the six phase bearingless motor. Finally, a five phase surface-mounted permanent magnet (PM) bearingless motor is built and the experimental results are presented to verify the validity and feasibility of the analysis. The results presented in this paper will give useful guidelines for design optimization of the MBLM.

Development of a Conduction-Cooled Superconducting Magnet System for Material Separation (물질분리를 위한 전도냉각형 초전도자석 시스템 개발)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Jung, W.M.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • A conduction-cooled superconducting magnet system is developed for material separation. The superconducting magnet for material separation has to be designed to have a strong magnetic field in a control volume. Since the magnetic field gradient is larger at the end rather than at the center of the magnet, we developed a design method to optimize the superconducting magnet for material separation. The safety of the superconducting magnet is evaluated, taking into account the electro-magnetic field, heat and structure. The superconducting coil is successfully wound by the wet-winding method. The superconducting coil is installed in a cryostat maintaining high vacuum, and cooled down to approximately 4 K by a two-stage GM cryocooler. The performance of the conduction-cooled superconducting magnet system is discussed with respect to the supplied current, cooling medium and cooling power of a cryocooler.

  • PDF

Development of Combined Permanent Magnet Type Microspeakers Used for Mobile Phones (이동통신 단말기용 통합 영구 자석 형태의 마이크로스피커 개발)

  • Hwang, Sang-Moon;Lee, Hong-Joo;Kwon, Joong-Hak;Hwang, Gun-Yong;Yang, Yong-Chang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.183-189
    • /
    • 2006
  • In mobile phones of multimedia era, microspeakers of high qualify sound are essential parts to generate human voice in speaker phone and MP3 song player. In this paper, two types of microspeakers, outer permanent magnet (PM) and combined PM type, are analyzed using electromagnetic, mechanical and their coupling analysis. For performance comparison, voice coil diameter is chosen as a design parameter to change excitation position and magnet volume for both types. For combined PM type, sound pressure level (SPL) is improved due to increased PM volume compared to outer PM type. Also, with the decreased voice coil diameter for combined PM type, the 1st resonant mode of the diaphragm is more efficiently excited due to concentrative excitation, resulting in lower and broader frequency range. Therefore, it can be said that the combined PM type microspeakers are more advantageous for high performance microspeaker which are essential for multimedia era.

Superconducting magnet system of in-flight separator for a heavy ion accelerator planned in Korea

  • Kim, J.W.;Kim, D.G.;Jo, H.C.;Choi, Y.S.;Kim, S.H.;Sim, K.D.;Sohn, M.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • An in-flight fragment separator, which aims to produce and study rare isotopes, consists of superferric quadrupole triplets and $30^{\circ}$ dipole magnets to focus and bend the beams for achromatic focusing and momentum dispersion, respectively. The separator is divided into pre and main stages, and we plan to use superconducting magnets employing high-Tc superconductor (HTS) coils in the pre-separator area, where radiation heating is high. The HTS coils will be cooled by cold He gas in 20-50 K, and in the other area, superferric magnets using low-temperature superconductor (LTS) will be used at 4 K. A few LTS coils were wound and successfully tested in a LHe dewar, and the design of cryostat has been optimized. Development of the HTS coils is ongoing in collaboration with a group at KERI. An HTS coil of racetrack shape was wound and tested in a $LN_2$ bath and in a dewar with cryocooler. No degradation on critical current due to coil winding was found.

Design and fabrication of an optimized Rogowski coil for plasma current sensing and the operation confidence of Alvand tokamak

  • Eydan, Anna;Shirani, Babak;Sadeghi, Yahya;Asgarian, Mohammad Ali;Noori, Ehsanollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2535-2542
    • /
    • 2020
  • To understand the fundamental parameters of Alvand tokamak, A Rogowski coil with an active integrator was designed and constructed. Considering the characteristics of the Alvand tokamak, the structural and electrical parameters affecting the sensor function, were designed. Calibration was performed directly in the presence of plasma. The sensor has a high resistance against interference of external magnetic fields. Plasma current was measured in various experiments. Based on the plasma current profile and loop voltage signal, the time evolution of plasma discharge was investigated and plasma behavior was analyzed. Alvand tokamak discharge was divided into several regions that represents different physical phenomena in the plasma. During the plasma discharge time, plasma had significant changes and its characteristic was not uniform. To understand the plasma behavior in each of the phases, the Rogowski sensor should have sufficient time resolution. The Rogowski sensor with a frequency up to 15 kHz was appropriate for this purpose.

Design and Fabrication of Printed Circuit Board (PCB) Integrated Energy Harvester (PCB 일체형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.846-851
    • /
    • 2013
  • Recently, energy harvesting technologies are considered as the great alternatives to reduce the dependency on secondary batteries. In this paper, we proposed PCB type energy harvester which can be directly integrated with other electronic components on same board. To form the three dimensional coil structure, two PCBs with patterned metal lines are solder bonded. For magnetic induction, inside of coil structure was filled with magnetic substance and rotary motioned external magnets are applied to near the harvester. The effects of metal wire width on PCB, thickness of magnetic substance, and frequency of rotary motion on energy harvesting performance are analyzed by computer simulation and experiments. Experimental results showed 29.89 ${\mu}W$ of power generation performance at the frequency of 5.2 Hz and it is shown that designed harvester can be effectively applied on vibration environment with very limited frequency.

Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator (공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구)

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF