• 제목/요약/키워드: Cohesive zone model

검색결과 71건 처리시간 0.023초

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구 (Finite Element Analysis and Validation for Mode I Interlaminar Fracture Behavior of Woven Fabric Composite for a Train Carbody Using CZM(Cohesive Zone Model))

  • 김승철;김정석;윤혁진;서승일
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.719-724
    • /
    • 2009
  • 본 연구에서는 직물 탄소/에폭시와 유리/에폭시의 DCB(double cantilever beam)시편을 제작하여 ASTM 5528-01에 준하여 모우드 I 층간파괴인성을 측정하고, 이와 동일한 조건의 유한요소해석을 수행하여 층간파괴거동을 해석적으로 평가하였다. 시험에 의하여 측정된 층간파괴인성은 탄소/에폭시는 평균 $845.7J/m^2$, 유리/에폭시는 $1,042J/m^2$였다. 유한요소 모델은 접착요소를 이용하여 층간파괴를 구현하였고, 측정된 층간파괴인성을 부여하였다. 해석 결과의 검증을 위하여 시험을 통하여 측정된 시편 끝단의 반력과 Timoshenko 빔 이론을 통하여 계산된 결과를 비교하였다. 측정된 결과와 해석결과는 유사하였다.

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • 제32권2호
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

The continuous-discontinuous Galerkin method applied to crack propagation

  • Forti, Tiago L.D.;Forti, Nadia C.S.;Santos, Fabio L.G.;Carnio, Marco A.
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.235-243
    • /
    • 2019
  • The discontinuous Galerkin method (DGM) has become widely used as it possesses several qualities, such as a natural ability to dealing with discontinuities. DGM has its major success related to fluid mechanics. Its major importance is the ability to deal with discontinuities and still provide high order of approximation. That is an important advantage when simulating cracking propagation. No remeshing is necessary during the propagation, since the crack path follows the interface of elements. However, DGM comes with the drawback of an increased number of degrees of freedom when compared to the classical continuous finite element method. Thus, it seems a natural approach to combine them in the same simulation obtaining the advantages of both methods. This paper proposes the application of the combined continuous-discontinuous Galerkin method (CDGM) to crack propagation. An important engineering problem is the simulation of crack propagation in concrete structures. The problem is characterized by discontinuities that evolve throughout the domain. Crack propagation is simulated using CDGM. Discontinuous elements are placed in regions with discontinuities and continuous elements elsewhere. The cohesive zone model describes the fracture process zone where softening effects are expressed by cohesive zones in the interface of elements. Two numerical examples demonstrate the capacities of CDGM. In the first example, a plain concrete beam is submitted to a three-point bending test. Numerical results are compared to experimental data from the literature. The second example deals with a full-scale ground slab, comparing the CDGM results to numerical and experimental data from the literature.

Humidity Aging Effect on Adhesive Strength of Composite Single-lap Joint

  • Kim, Myungjun;Kim, Yongha;Kim, Pyunghwa;Roh, Jin-Ho;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.56-62
    • /
    • 2017
  • Because adhesively bonded joints are used in many structural systems, it is important to predict accurate adhesive strengths. Composite aircraft with many joints are easily exposed to low temperatures and high relative humidity. This paper presents a humidity aging effect on the adhesive strength of a composite single-lap joint (SLJ). The adhesive strength of the SLJ is predicted using a finite element analysis with a cohesive zone model (CZM) technique. The humidity aging effect is evaluated based on the adhesive strength and CZM parameters. A lap joint test is carried out on the composite SLJ specimens, which are exposed for four months of 100% R.H. at $25^{\circ}C$. The predicted strengths are in good agreement with experimental data, and the actual crack propagation is satisfactorily simulated using the local CZM technique.

모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측 (Prediction of Progressive Interlaminar Fracture in Curved Composite Laminates Under Mode I Loading)

  • 강승구;신광복;이현수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.930-932
    • /
    • 2017
  • 본 논문은 모드 I 하중하에서 곡률이 있는 복합재 적층판의 점진적 층간파손 예측에 대해 서술하였다. 곡률을 갖는 복합재 적층판의 층간파손 예측은 ABAQUS V6.13의 응집영역모델을 사용하여 수행하였다. 응집영역모델의 입력값인 층간파괴인성치는 모드 I, 모드 II, 그리고 혼합모드에 대한 층간파괴인성 시험을 통해 도출하였다. 곡률을 갖는 복합재 적층판의 점진적 층간파손 거동은, 시험과 수치해석결과가 잘 일치하는 것을 확인하였다.

  • PDF

Determining a novel softening function for modeling the fracture of concrete

  • Hossein, Karimpour;Moosa, Mazloom
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.351-374
    • /
    • 2022
  • Softening function is the primary input for modeling the fracture of concrete when the cohesive crack approach is used. In this paper, based on the laboratory data on notched beams, an inverse algorithm is proposed that can accurately find the softening curve of the concrete. This algorithm uses non-linear finite element analysis and the damage-plasticity model. It is based on the kinematics of the beam at the late stages of loading. The softening curve, obtained from the corresponding algorithm, has been compared to other softening curves in the literature. It was observed that in determining the behavior of concrete, the usage of the presented curve made accurate results in predicting the peak loads and the load-deflection curves of the beams with different concrete mixtures. In fact, the proposed algorithm leads to softening curves that can be used for modeling the tensile cracking of concrete precisely. Moreover, the advantage of this algorithm is the low number of iterations for converging to an appropriate answer.

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석 (Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete)

  • 백종은;유평준
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.