• Title/Summary/Keyword: Cognitive Interface

Search Result 205, Processing Time 0.025 seconds

A Study on the Intelligent Man-Machine Interface System: The Experiments of the Recognition of Korean Monotongs and Cognitive Phenomena of Korean Speech Recognition Using Artificial Neural Net Models (통합 사용자 인터페이스에 관한 연구 : 인공 신경망 모델을 이용한 한국어 단모음 인식 및 음성 인지 실험)

  • Lee, Bong-Ku;Kim, In-Bum;Kim, Ki-Seok;Hwang, Hee-Yeung
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.101-106
    • /
    • 1989
  • 음성 및 문자를 통한 컴퓨터와의 정보 교환을 위한 통합 사용자 인터페이스 (Intelligent Man- Machine interface) 시스템의 일환으로 한국어 단모음의 인식을 위한 시스템을 인공 신경망 모델을 사용하여 구현하였으며 인식시스템의 상위 접속부에 필요한 단어 인식 모듈에 있어서의 인지 실험도 행하였다. 모음인식의 입력으로는 제1, 제2, 제3 포르만트가 사용되었으며 실험대상은 한국어의 [아, 어, 오, 우, 으, 이, 애, 에]의 8 개의 단모음으로 하였다. 사용한 인공 신경망 모델은 Multilayer Perceptron 이며, 학습 규칙은 Generalized Delta Rule 이다. 1 인의 남성 화자에 대하여 약 94%의 인식율을 나타내었다. 그리고 음성 인식시의 인지 현상 실험을 위하여 약 20개의 단어를 인공신경망의 어휘레벨에 저장하여 음성의 왜곡, 인지시의 lexical 영향, categorical percetion등을 실험하였다. 이때의 인공 신경망 모델은 Interactive Activation and Competition Model을 사용하였으며, 음성 입력으로는 가상의 음성 피쳐 데이타를 사용하였다.

  • PDF

Conceptualizing Safety Systems Human Performance improvement using Augmented Reality

  • Murungi, Mwongeera;Jung, JaeCheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2016
  • The system performance of Engineered Safety Features is of utmost importance in a nuclear power plant. The human performance is identified as most critical to assurance of the optimal operability of safety systems during an emergency. The aim of this study is to determine how the performance of safety system could be evaluated using Augmented Reality technology. The paper presents a description of how a systems engineered approach could be used to develop the necessary operating conditions needed to conduct this measurement. Augmented Virtual Reality (AVR) interface technology is achieving ease of availability and widespread use in many applications today as illustrated by the launch of several AR and VR devices aimed at media consumption. As such, environments that incorporate such AVR hardware have become invaluable tools in designing human interface systems because of the high fidelity and intuitive response to natural human interaction that can be achieved [2]. The outcome of the measurement undertaken is to determine whether 1.) Operator(s) performance can be enhanced by introducing an improved cognitive method of monitoring plant information during an Emergency Operating Procedures (EOP) and 2.) In correlation, inform the performance of the diverse safety systems on the basis of human factors.

Serious Game Design for Rehabilitation Training with Infrared Ray Pen (적외선 펜을 이용한 재활훈련 기능성 게임 콘텐츠 설계)

  • Ok, Soo-Yol;Kam, Dal-Hyun
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.151-161
    • /
    • 2009
  • In this paper, we propose a serious game which aims to draw the interest of rehabilitants and increase their locomotive ability with an infrared ray(IR) pen interface. The proposed game focuses on providing easy-to-manipulate cognitive rehabilitation environments. In order to achieve the goal, we devised new game interface composed of a Wiimote controller and a IR pen. Moreover, SVM(support vector machine) algorithm was employed for gesture recognition. The proposed game can be successfully utilized not only for rehabilitants but also for aged persons in preventing dementia and promoting their health.

  • PDF

Review on Discrete, Appraisal, and Dimensional Models of Emotion (정서의 심리적 모델: 개별 정서 모델, 평가 모델, 차원 모델을 중심으로)

  • Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.179-186
    • /
    • 2011
  • Objective: This study is to review three representative psychological perspectives that explain scientific construct of emotion, that are the discrete emotion model, appraisal model, and dimensional model. Background: To develop emotion sensitive interface is the fusion area of emotion and scientific technology, it is necessary to have a balanced mixture of both the scientific theory of emotion and practical engineering technology. Extensional theories of the emotional structure can provide engineers with relevant knowledge in functional application of the systems. Method: To achieve this purpose, firstly, literature review on the basic emotion model and the circuit model of discrete emotion model as well as representative theories was done. Secondly, review on the classical and modern theories of the appraisal model emphasizing cognitive appraisal in emotion provoking events was conducted. Lastly, a review on dimensional theories describing emotion by dimensions and representative theories was conducted. Results: The paper compared the three models based on the prime points of the each model. In addition, this paper also made a comment on a need for a comprehensive model an alternative to each model, which is componential model by Scherer(2001) describing numerous emotional aspects. Conclusion: However, this review suggests a need for an evolved comprehensive model taking consideration of social context effect and discrete neural circuit while pinpointing the limitation of componential model. Application: Insight obtained by extensive scientific research in human emotion can be valuable in development of emotion sensitive interface and emotion recognition technology.

Sex Differences in Preference Style for Navigation Design (네비게이션 디자인에 있어 성별에 따른 선호 스타일 연구)

  • Kim Soon-Deok;Seo Jong-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2005
  • This study aimed to understand the sex differences in cognitive behaviors in website design and demonstrate a practical basis for utilizing these differences into more user-centered design concept. Especially, we focused on the sex-different preference according to the information architecture of website navigation. First, We investigated general differences between men and women in cognitive behaviors through various literature studies. According to our investigation, men's cognitive works generally tend to follow a regular sequence and proceed step by step. On the other hand, women's cognitive style is generally characterized by random generation and simultaneous progress. To examine that these differences can be found in use of website navigation, we made an experiment in website design. We designed several test websites that have same contents but different style of navigation structure. A similar number of men and women were chosen for this test and they implemented given tasks. During the test, participants reported their preference on each websites and their implementing time and number of errors were collected. Based on the analysis of test data, it was possible to conclude that male participants' preference for the navigation with a narrow and deep information structure is relatively higher than female participants' preference for the same navigation, On the other hand, female participants have a preference of the navigation with a broad and swallow information structure. The result of study showed that there is a close correlation between the sex differences in preference of navigation types and the general sex differences in cognitive behavior. This finding can be used as a basis for designing the website navigation in which sex differences are reflected.

  • PDF

A Study on the Multi-sensory Usability Evaluation of Haptic Device in Vehicle (차량용 햅틱 디바이스의 다감각 사용성 평가 연구)

  • Kim, Hyeon-Seok;Lee, Sang-Jin;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4968-4974
    • /
    • 2012
  • A haptic device is regarded as the human machine interface technology for easier, more accurate, and intuitive operation. The purpose of this paper is to study how to improve the cognitive ability of the existing vehicle haptic device used only tactile feedback. In this study, usability evaluation used the multi-sensory feedback which is adding auditory feedback to the existing tactile feedback. The emotional factor that drivers have on the haptic device is extracted by the sensibility analysis. The result of study provides some consideration and direction to need in implementation of a haptic device and it also confirms their possibility meaningfully. And it is possible to suggest the design direction that satisfies the driver.

A study on user satisfaction in TUI environment (TUI 환경의 유저 사용 만족도 연구)

  • Choi, heungyeorl;Yang, seungyong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.113-127
    • /
    • 2015
  • An interface in smart device environment is changing to TUI(touch user interface) environment where a system is being controlled by physical touch, differently from a system controlled through conventional mouse and keyboard. What is more important than anything else in this TUI environment is to implement interface in consideration of learn ability and cognitive constructivism according to user's experience. Therefore, now is the time when it is necessary to carry out various studies on smart content design process going a step farther together with discussing the details of user's experience factor. Hence, this study was intended to look into what effect a user's experiential traits had on the production of contents for the purpose of measures for improving TUI user satisfaction in order to effectively realize contents in smart environment. Results were yielded by using a statistical empirical analysis such as cross-tabulation analysis according to important variable and user, paired t-test, multiple response analysis, and preference frequency analysis of user preference on the basis of a survey. As a result, a system was presented for implementing DFSS(Design For Six Sigma) process. TUI experience factor can be divided into direct habitual experience, direct learning experience, indirect habitual experience, and indirect learning experience. And in the results of study, it was possible to find that the important variables of this study had a positive effect on the improvement of use satisfaction with contents on the whole according to the user convenience of smart contents. This study is expected to have a positive effect on efficient smart device-based contents production by providing objective information according to empirical analysis to smart media-based developer and designer and presenting a model for improving the changed TUI usability.

A Study on the Ease of Use of Open Source-based Knitting Machine User Interface Design (오픈소스기반 니팅기 사용자 인터페이스 디자인 사용편의성에 관한 연구)

  • Jo, Jae-Yoon;Nam, Won-Suk;Jang, Joong-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • This paper is a study to improve the usability due to the commercialization of open source-based knitting machines. Based on the analysis, FGD was conducted to derive considerations and to evaluate the evaluation factors based on the derived contents. Based on the evaluation principles derived, tasks were created for each UI (user interface) situation to measure execution time and error frequency. The analysis results show that model C has the highest user-friendliness in terms of learning, conciseness, cognitive fitness, convenience, state maintainability, and intuition. Ease of use will be improved.

Conceptual Design of Information Displays Supporting Severe Accident Management in Nuclear Power Plants Based on Ecological Interface Design (EID) Framework (생태학적 인터페이스 디자인 프레임워크에 기반한 원전 중대사고 지원 정보디스플레이 개념설계)

  • Cho, Piljae;Ham, Dong-Han;Lee, Hyunchul
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.61-72
    • /
    • 2022
  • This study aims to propose a conceptual design of information displays for supporting responsive actions under severe accidents in Nuclear Power Plants (NPPs). Severe accidents in NPPs can be defined as accident conditions that are more severe than a design basis accident and involving significant core degradation. Since the Fukushima accident in 2011, the management of severe accidents is increasing important in nuclear industry. Dealing with severe accidents involves several cognitively complex activities, such as situation assessment; accordingly, it is significant to provide human operators with appropriate knowledge support in their cognitive activities. Currently, severe accident management guidelines (SAMG) have been developed for this purpose. However, it is also inevitable to develop information displays for supporting the management of severe accidents, with which human operators can monitor, control, and diagnose the states of NPPs under severe accident situations. It has been reported that Ecological Interface Design (EID) framework can be a viable approach for developing information displays used in complex socio-technical systems such as NPPs. Considering the design principles underlying the EID, we can say that EID-based information displays can be useful for dealing with severe accidents effectively. This study developed a conceptual design of information displays to be used in severe accidents, following the stipulated design process and principles of the EID framework. We particularly attempted to develop a conceptual design to make visible the principle knowledge to be used for coping with dynamically changing situations of NPPs under severe accidents.

Classification System of EEG Signals for Mental Action (정신활동에 의한 EEG신호의 분류시스템)

  • 김민수;김기열;정대영;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2875-2878
    • /
    • 2003
  • In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.

  • PDF