• 제목/요약/키워드: Coffin-Manson Method

검색결과 22건 처리시간 0.022초

초내열합금 GTD-111의 고온 저주기피로 수명예측 (Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures)

  • 양호영;김재훈;유근봉;이한상;유영수
    • 대한기계학회논문집A
    • /
    • 제35권7호
    • /
    • pp.753-758
    • /
    • 2011
  • 초내열합금인 GTD-111은 고온강도와 내산화성이 우수하여 가스터빈에서 사용되는 소재이다. 초내열합금의 피로 수명 예측은 가스터빈의 효율을 개선하기 위하여 매우 중요하다. 본 연구에서의 저주기 피로시험은 실제 운전 환경과 유사하게 변형률 범위, 온도를 다양하게 설정하여 시험을 수행하였다. GTD-111의 저주기 피로수명을 예측하기 위하여 변형률 에너지 밀도와 파단 사이클과의 관계를 이용하였다. 시험결과를 토대로 변형률 에너지법과 Coffin-Manson법에 의하여 피로수명을 예측하였다.

Sn-37mass%Pb 솔더 및 Sn-3.5mass%Ag 무연솔더를 이용한 ${\mu}BGA$ 솔더접합부의 열피로수명 예측 (Thermal Fatigue Life Prediction of ${\mu}BGA$ Solder Joint Using Sn-37mass%Pb Solder and Sn-3.5mass%Ag Lead-free Solder)

  • 신영의;이준환;하범용;정승부;정재필
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.406-412
    • /
    • 2001
  • This study is focussed on the numerical prediction of the thermal fatigue life of a ${\mu}BGA$(Micro Ball Grid Array) solder joint. Numerical method is used to perform three-dimensional finite element analysis for Sn-37mass%Pb. Sn-3.5mass%Ag solder alloys during the given thermal cycling. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. In this study, a practical correlation for the prediction of the thermal fatigue life is suggested by using the dimensionless variable $\gamma$. As a result. it could be found that Sn-3.5mass%Ag has longer fatigue life than Sn-37mass%Pb in low cycle fatigue. In addition. the result with ${\gamm}ashow$a good agreement with the FEA results.

  • PDF

차륜 및 차축 재료의 저주기 피로특성 (Low Cycle Fatigue Characteristics of the Railway Wheels and Axles)

  • 김대진;석창성;서정원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.427-433
    • /
    • 2005
  • Railway wheelset is the most essential part which undergoes severe cyclic loadings. In recent years, there has been increasing need for insuring the safety of running as the speed of the railway vehicles is getting higher. So it is required on the assessment of fatigue characteristics of the wheelset to consider plastic deformation which might be probable in the severe loading condition. In this study, total-strain controlled low cycle fatigue(LCF) test were performed to observe the LCF behaviors of the railway wheels and axles using companion specimens method. From the experimental results, the cyclic mechanical properties have been evaluated and total strain amplitude versus life relationship have been derived using the empirical Coffin-Manson law.

  • PDF

고강도 저합금강의 저주기 피로특성 (Low Cycle Fatigue Characteristics of High Strength Low Alloy Steel)

  • 김재훈;김덕회;이종현;조성석;전병환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.169-174
    • /
    • 2001
  • Low cycle fatigue tests are performed on high strength low alloy steels that be developed for submarine material. The relation between absorbed plastic strain energy and numbers of cycle to failure is examined in order to predict the low cycle fatigue life of structural steels by using plastic strain energy method. The cyclic properties are determined by a least square fit techniques. The life predicted by the plastic strain energy method is found to coincide with experiment data and results obtained from the Coffin-Manson method. Also the cyclic behavior of structural steels is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of structural steels are investigated according to changing tempering temperatures. In the case of PFS steels, the $\varepsilon$-Cu is formed in 550C of tempering temperature and enhances the low cycle fatigue properties.

  • PDF

Simulation-based fatigue life assessment of a mercantile vessel

  • Ertas, Ahmet H.;Yilmaz, Ahmet F.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.835-852
    • /
    • 2014
  • Despite the availability of other transport methods such as land and air transportations, marine transportation is the most preferred and widely used transportation method in the world because of its economical advantages. In service, ships experience cyclic loading. Hence, it can be said that fatigue fracture, which occurs due to cyclic loading, is one of the most critical failure modes for vessels. Accordingly, this makes fatigue failure prevention an important design requirement in naval architecture. In general, a ship structure contains many structural components. Because of this, structural modeling typically relies on Finite Element Analysis (FEA) techniques. It is possible to increase fatigue performance of the ship structures by using FEA in computer aided engineering environment. Even if literature papers as well as rules of classification societies are available to assess effect of fatigue cracks onto the whole ship structure, analytical studies are relatively scarce because of the difficulties of modeling the whole structure and obtaining reliable fatigue life predictions. As a consequence, the objective of this study is to improve fatigue strength of a mercantile vessel against fatigue loads via analytical method. For this purpose, the fatigue life of the mercantile vessel has been investigated. Two different type of fatigue assessment models, namely Coffin-Manson and Morrow Mean stress approaches, were used and the results were compared. In order to accurately determine the fatigue life of the ship, a nonlinear finite element analysis was conducted considering plastic deformations and residual stresses. The results of this study will provide the designer with some guidelines in designing mercantile vessels.

인공 신경망을 이용한 크리프-피로 상호작용시 수명예측기법에 관한 연구 (A Study on the Life Prediction Method using Artificial Neural Network under Creep-Fatigue Interaction)

  • 권영일;김범준;임병수
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.135-142
    • /
    • 2001
  • The effect of tensile hold time on the creep-fatigue interaction in AISI 316 stainless steel was investigated. To study the fatigue characteristics of the material, strain controlled low cycle fatigue(LCF) tests were carried out under the continuous triangular waveshape with three different total strain ranges of 1.0%, 1.5% and 2.0%. To study the creep-fatigue interaction, 5min., 10min., and 30min. of tensile hold times were applied to the continuous triangular waveshape with the same three total strain ranges. The creep-fatigue life was found to be the longest when the 5min. tensile hold time was applied and was the shortest when the 30min. tensile hold time was applied. The cause fur the shortest creep-fatigue life under the 30min. tensile hold time is believed to be the effect of the increased creep damage per cycle as the hold time increases. The creep-fatigue life prediction using artificial neural network(ANN) showed closer prediction values to the experimental values than by the modified Coffin-Manson method.

  • PDF

PZT 세라믹 레조네이터 무연솔더 접합부의 열-기계적 피로 가속수명 (Accelerated Thermo-Mechanical Fatigue Life of Pb-Free Solder Joints for PZT Ceramic Resonator)

  • 홍원식;박노창;오철민
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.337-343
    • /
    • 2009
  • In this study, we optimized Pb-free Sn/Ni plating thickness and conditions were optimized to counteract the environmental regulations, such as RoHS and ELV(End-of Life Vehicles). The $B_{10}$ life verification method was also suggested to have been successful when used with the accelerated life test(ALT) for assessing Pb-free solder joint life of piezoelectric (PZT) ceramic resonator. In order to evaluate the solder joint life, a modified Norris-Landzberg equation and a Coffin-Manson equation were utilized. Test vehicles that were composed of 2520 PZT ceramic resonator on FR-4 PCB with Sn-3.0Ag-0.5Cu for ALT were manufactured as well. Thermal shock test was conducted with 1,500 cycles from $(-40{\pm}2)^{\circ}C$ to $(120{\pm}2)^{\circ}C$, and 30 minutes dwell time at each temperature, respectively. It was discovered that the thermal shock test is a very useful method in introducing the CTE mismatch caused by thermo-mechanical stress at the solder joints. The resonance frequency of test components was measured and observed the microsection views were also observed to confirm the crack generation of the solder joints.

Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측 (Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

CR60강, SM58Q강과 그 용접부의 저사이클 피로특성 (A Study of Low Cycle Fatigue Properties in CR60,SM50Q Steel and the Weldments)

  • 김창주;염태동;유인석;위창욱
    • Journal of Welding and Joining
    • /
    • 제12권1호
    • /
    • pp.73-79
    • /
    • 1994
  • Low cycle fatigue test was performed by companion specimens method to compare the properties of cyclic strain for the weldments of controlled rolling steel CR60 and welding structural steel SM58Q. And the result does not showed any difference of low cycle fatigue life between weldments. Especially, the values of coefficient of cyclic plastic strain $C_{p}$ and exponent of cyclic plastic strain $K_{p}$ of heat affected zones of CR60 steel and SM58Q steel were same. And $C_{p}$ and $K_{p}$ of CR60 steel were equal to the values of weld it means a good combination between the base metal, the heat affected zone and the weld of CR60 steel.eel.eel.

  • PDF

A Study on $\mu$BGA Solder Joints Reliability Using Lead-free Solder Materials

  • Shin, Young-Eui;Lee, Jun-Hwan;Kon, Young-Wook;Lee, Chong-Won;Yun, Jun-Ho;Jung, Seug-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.919-926
    • /
    • 2002
  • In this study, the numerical prediction of the thermal fatigue lie? of a $\mu$BGA (Micro Ball Grid Array) solder joint was focused. Numerical method was performed using the three-dimensional finite element analysis for various solder alloys such as Sn-37%Pb, Sn-3.5%Ag, Sn-3.5%Ag-0.7%Cu and Sn-3.5%Ag-3%In-0.5%Bi during a given thermal cycling. Strain values obtained by the result of mechanical fatigue tests for solder alloys, were used to predict the solder joint fatigue life using the Coffin-Manson equation. The numerical results showed that Sn-3.5%Ag with the 50-degree ball shape geometry had the longest thermal fatigue life in low cycle fatigue. A practical correlation for the prediction of the thermal fatigue life was also suggested by using the dimensionless variable γ. Additionally Sn-3.5Ag-0.75Cu and Sn-2.0Ag-0.5Cu-2.0Bi were applied to 6$\times$8$\mu$BGA obtained from the 63Sn-37Pb Solder. This 6$\times$8$\mu$BGA were tested at different aging conditions at 130$\^{C}$, 150$\^{C}$, 170$\^{C}$ for 300, 600 and 900 hours. Thickness of the intermetallic compound layer was measured thor each condition and the activation energy thor their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS ( Energy Dispersive Spectroscopy).