• 제목/요약/키워드: Coefficient Of Performance

Search Result 4,665, Processing Time 0.036 seconds

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

Experimental Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Leading Angles of a Rear-Guider for a Room Air-Conditioner (리어가이더 선단각도에 따른 룸에어콘용 관류홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.35-43
    • /
    • 2013
  • Generally, the chassis of an indoor RAC is composed of a rear-guider and a stabilizer. The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of the chassis of an indoor RAC. The purpose of this paper is to select the optimum design factors through the aerodynamic performance of a cross-flow fan. The design factors are the leading angle of a rear-guider (${\theta}_1$), a stabilizer setup angle(${\theta}_2$), a rear-guider clearance(${\epsilon}_1$), and a stabilizer clearance(${\epsilon}_2$), respectively. As a result, the optimum design factors of an indoor RAC can be presented as a combination of ${\theta}_1=33^{\circ}$, ${\theta}_2=55^{\circ}$, ${\epsilon}_1=6{\sim}8mm$, and ${\epsilon}_2=7mm$ through the analysis of a static pressure coefficient and a static pressure efficiency.

Prediction of Residual Resistance Coefficient of Ships using Convolutional Neural Network (합성곱 신경망을 이용한 선박의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Hwang, Seung-Hyun;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.243-250
    • /
    • 2022
  • In the design stage of hull forms, a fast prediction method of resistance performance is needed. In these days, large test matrix of candidate hull forms is tested using Computational Fluid Dynamics (CFD) in order to choose the best hull form before the model test. This process requires large computing times and resources. If there is a fast and reliable prediction method for hull form performance, it can be used as the first filter before applying CFD. In this paper, we suggest the offset-based performance prediction method. The hull form geometry information is applied in the form of 2D offset (non-dimensionalized by breadth and draft), and it is studied using Convolutional Neural Network (CNN) and adapted to the model test results (Residual Resistance Coefficient; CR). Some additional variables which are not included in the offset data such as main dimensions are merged with the offset data in the process. The present model shows better performance comparing with the simple regression models.

Ground motion intensity measure to evaluate seismic performance of rocking foundation system

  • Ko, Kil-Wan;Ha, Jeong-Gon
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.563-576
    • /
    • 2021
  • The rocking foundation is effective for reducing structural seismic demand and avoiding overdesign of the foundation. It is crucial to evaluate the performance of rocking foundations because they cause plastic hinging in the soil. In this study, to derive optimized ground motion intensity measures (IMs) for rocking foundations, the efficiency of IMs correlated with engineering demand parameters (EDPs) was estimated through the coefficient determination using a physical modeling database for rocking shallow foundations. Foundation deformations, the structural horizontal drift ratio, and contribution in drift from foundation rotation and sliding were selected as crucial EDPs for the evaluation of rocking foundation systems. Among 15 different IMs, the peak ground velocity exhibited the most efficient parameters correlated with the EDPs, and it was discovered to be an efficient ground motion IM for predicting the seismic performance of rocking foundations. For vector regression, which uses two IMs to present the EDPs, the IMs indicating time features improved the efficiency of the regression curves, but the correlation was poor when these are used independently. Moreover, the ratio of the column-hinging base shear coefficient to the rocking base shear coefficient showed obvious trends for the accurate assessment of the seismic performance of rocking foundation-structure systems.

A Study on the Heat Transfer Perfomance of Dimpled Double Pipe Heat Exchanger on a Fuel Cell (연료전지용 딤플형 이중관열교환기의 열전달 성능에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1727-1733
    • /
    • 2015
  • In the present study, the heat transfer performance of dimpled double-pipe heat exchangers for fuel cells that are utilized as cooling systems of fuel cells was studied. In addition, to comparatively analyze the heat transfer performance of dimpled double-pipe heat exchanger for fuel cells, plain double-pipe heat exchangers were also studied. Experimental results were derived on changes in the Reynolds numbers of the cooling water flowing in dimpled and plain double-pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical overall heat transfer coefficients and the experimental overall heat transfer coefficients were comparatively analyzed and the following results were derived. The heat transfer rate lost by the hot air and that of the heat transfer rate obtained by the cooling water were well balanced. The experiments of plain double-pipe heat exchangers and dimpled double-pipe heat exchangers were conducted under normal conditions and the theoretical overall heat transfer coefficient and the experimental overall heat transfer coefficient coincided well with each other. In both plain double-pipe heat exchangers and dimpled double-pipe heat exchangers, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of dimpled double-pipe heat exchangers was shown to be higher by 1.2 times than that of plain double-pipe heat exchangers.

Cloud monitoring system for assembled beam bridge based on index of dynamic strain correlation coefficient

  • Zhao, Yiming;Dan, Danhui;Yan, Xingfei;Zhang, Kailong
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • The hinge joint is the key to the overall cooperative working performance of the assembled beam bridge, and it is also the weakest part during the service period. This paper proposes a method for monitoring and evaluating the lateral cooperative working performance of fabricated beam bridges based on dynamic strain correlation coefficient indicator. This method is suitable for monitoring and evaluation of hinge joints status between prefabricated girders and overall cooperative working performance of bridge, without interruption of traffic and easy implementation. The remote cloud monitoring and diagnosis system was designed and implemented on a real assembled beam bridge. The algorithms of data preprocessing, online indicator extraction and status diagnosis were given, and the corresponding software platform and scientific computing environment for cloud operation were developed. Through the analysis of real bridge monitoring data, the effectiveness and accuracy of the method are proved and it can be used in the health monitoring system of such bridges.

Development of Traction and Field Performance Model of Two-Wheel Tractor (보행용(步行用) 트랙터의 율인성능(率引性能) 모형(模型)과 분석(分析) 프로그램의 개발)

  • Rhee, Joong Yong;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-26
    • /
    • 1984
  • This study intended to develop the prediction models of the traction and field performance of two-wheel tractors by using the principles which were applied for predicting those of the four-wheel tractors. The traction model developed in this study consists of the net traction coefficient, rolling resistance coefficient and traction efficiency, Which are expressed as functions of both wheel numeric and slip. A computer program on the field performance of two-wheel tractors is also developed to predict the drawbar horsepower, traction force, traction efficiency, rotational speed of engine and engine horsepower if the characteristics of the engine performance and operational condition of the two-wheel tractor are known. Based on the developed models, the conditions of basic variables to maximize the field performance were analyzed so as to assess the existing two-wheel tractor.

  • PDF

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.