• Title/Summary/Keyword: Coding dictionary

Search Result 21, Processing Time 0.026 seconds

Fast Matching Pursuit Method Using Property of Symmetry and Classification for Scalable Video Coding

  • Oh, Soekbyeung;Jeon, Byeungwoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.278-281
    • /
    • 2000
  • Matching pursuit algorithm is a signal expansion technique whose efficiency for motion compensated residual image has already been demonstrated in the MPEG-4 framework. However, one of the practical concerns related to applying matching pursuit algorithm to real-time scalable video coding is its massive computation required for finding dictionary elements. In this respective, this paper proposes a fast algorithm, which is composed of three sub-methods. The first method utilizes the property of symmetry in 1-D dictionary element and the second uses mathematical elimination of inner product calculation in advance, and the last one uses frequency property of 2-D dictionary. Experimental results show that our algorithm needs about 30% computational load compared to the conventional fast algorithm using separable property of 2-D gabor dictionary with negligible quality degradation.

  • PDF

Acoustic Signal Classifier Design using Dictionary Learning (딕셔너리 러닝을 이용한 음파 신호 분류기 설계)

  • Park, Sung Min;Sah, Sung Jin;Oh, Kwang Myung;Lee, Hui Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • As new car technology is developing, temporal interaction is needed in automotive. Rhythmic pattern is one of the practical examples of temporal interaction in vehicle. To recognize rhythmic pattern and its input medium, dictionary learning is applicable algorithm. In this paper, performance and memory requirement of the learning algorithm is tested and is sufficiently good for use this acoustic sound.

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

A VLSI Design and Implementation of a Single-Chip Encoder/Decoder with Dictionary Search Processor(DISP) using LZSS Algorithm and Entropy Coding (LZSS 알고리즘과 엔트로피 부호를 이용한 사전탐색처리장치를 갖는 부호기/복호기 단일-칩의 VLSI 설계 및 구현)

  • Kim, Jong-Seop;Jo, Sang-Bok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • This paper described a design and implementation of a single-chip encoder/decoder using the LZSS algorithm and entropy coding in 0.6${\mu}{\textrm}{m}$ CMOS technology. Dictionary storage for the dictionary search processor(DISP) used a 2K$\times$8bit on-chip memory with 50MHz clock speed. It performs compression on byte-oriented input data at a data rate of one byte per clock cycle except when one out of every 33 cycles is used to update the string window of dictionary. In result, the average compression ratio is 46% by applied entropy coding of the LZSS codeword output. This is to improved on the compression performance of 7% much more then LZSS.

  • PDF

Fast Matching Pursuit Using Absolute Symmetry and Classified Dictionary (절대값 대칭성과 사전 분류를 이용한 고속 Matching Pursuit)

  • O, Seok-Byeong;Jeon, Byeong-U
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.11-21
    • /
    • 2002
  • Although the matching Pursuit is effective for video coding at low bit rate, it has a Problem since it needs much more calculation than the conventional block-based video coding method. The proposed fast matching pursuit method reduces inner product calculation that takes the most part of entire calculation by utilizing the symmetry of the absolute values of the one-dimensional Gator dictionary bases, the modified dictionary which allows faster matching without causing image quality degradation, and a Property of the two-dimensional Gabor dictionary that can be grouped in advance to four classes according to its frequency characteristics. Proposed method needs only about 1/8 of multiplications compared to the well-known separability-based fast method proposed by Neff.

Improved Pattern Recoginition Coding System of a Handwriting Character with 3D (3D Magnetic Ball을 이용한 필기체 인식 향상 Coding System)

  • Sim, Kyu Seung;Lee, Jae Hong;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.10-19
    • /
    • 2013
  • This Paper proposed the development of new magnetic sensor and recognition system to expendite pattern recognition of a handwriting character. Received character graphics should be performed the session and balancing and no extraction of end points, bend points and juntions separately. The Artifical intelligence algorithm is adapted to structure snalysis and recognition process by individual basic letter dictionary except for the handwriing character graphic dictionaryimproving error of recognition algorithm and enomous dictionary for generalization. In this Paper, recognition rate of the received character are compared with pre registered character at letter dictionary for performance test of magnetic ball sensor. As a result of unicode conversion and eomparison, the artificial intelligence study have recognition rate more than 95% at initial recognition rate of 70%.

A Noisy Videos Background Subtraction Algorithm Based on Dictionary Learning

  • Xiao, Huaxin;Liu, Yu;Tan, Shuren;Duan, Jiang;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1946-1963
    • /
    • 2014
  • Most background subtraction methods focus on dynamic and complex scenes without considering robustness against noise. This paper proposes a background subtraction algorithm based on dictionary learning and sparse coding for handling low light conditions. The proposed method formulates background modeling as the linear and sparse combination of atoms in the dictionary. The background subtraction is considered as the difference between sparse representations of the current frame and the background model. Assuming that the projection of the noise over the dictionary is irregular and random guarantees the adaptability of the approach in large noisy scenes. Experimental results divided in simulated large noise and realistic low light conditions show the promising robustness of the proposed approach compared with other competing methods.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

Enhanced Prediction for Low Complexity Near-lossless Compression (낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This paper proposes an enhance prediction for conventional near-lossless coder to effectively lower external memory bandwidth in image processing SoC. First, we utilize an already reconstructed green component as a base of predictor of the other color component because high correlation between RGB color components usually exists. Next, we can improve prediction performance by applying variable block size prediction. Lastly, we use minimum internal memory and improve a temporal prediction performance by using a template dictionary that is sampled in previous frame. Experimental results show that the proposed algorithm shows better performance than the previous works. Natural images have approximately 30% improvement in coding efficiency and CG images have 60% improvement on average.

A Deep Learning based Inter-Layer Reference Picture Generation Method for Improving SHVC Coding Performance (SHVC 부호화 성능 개선을 위한 딥러닝 기반 계층간 참조 픽처 생성 방법)

  • Lee, Wooju;Lee, Jongseok;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.401-410
    • /
    • 2019
  • In this paper, we propose a reference picture generation method for Inter-layer prediction based deep learning to improve the SHVC coding performance. A description will be given of a structure for performing filtering using a VDSR network on a DCT-IF based upsampled picture to generate a new reference picture and a training method for generating a reference picture between SHVC Inter-layer. The proposed method is implemented based on SHM 12.0. In order to evaluate the performance, we compare the method of generating Inter-layer predictor by applying dictionary learning. As a result, the coding performance of the enhancement layer showed a bitrate reduction of up to 13.14% compared to the method using dictionary learning, a bitrate reduction of up to 15.39% compared to SHM, and a bitrate reduction of 6.46% on average.