• Title/Summary/Keyword: Coding condition

Search Result 208, Processing Time 0.024 seconds

Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension (회전 포레스트 분류기법을 이용한 HEVC 스크린 콘텐츠 화면 내 부호화 조기분할 결정 방법)

  • Heo, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.115-125
    • /
    • 2018
  • This paper presents a fast partition decision framework for High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) based on machine learning. Currently, the HEVC performs quad-tree block partitioning process to achieve optimal coding efficiency. Since this process requires a high computational complexity of the encoding device, the fast encoding process has been studied as determining the block structure early. However, in the case of the screen content video coding, it is difficult to apply the conventional early partition decision method because it shows different partition characteristics from natural content. The proposed method solves the problem by classifying the screen content blocks after partition decision, and it shows an increase of 3.11% BD-BR and 42% time reduction compared to the SCC common test condition.

Fast Prediction Mode Decision in HEVC Using a Pseudo Rate-Distortion Based on Separated Encoding Structure

  • Seok, Jinwuk;Kim, Younhee;Ki, Myungseok;Kim, Hui Yong;Choi, Jin Soo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.807-817
    • /
    • 2016
  • A novel fast algorithm is suggested for a coding unit (CU) mode decision using pseudo rate-distortion based on a separated encoding structure in High Efficiency Video Coding (HEVC). A conventional HEVC encoder requires a large computational time for a CU mode prediction because prediction and transformation procedures are applied to obtain a rate-distortion cost. Hence, for the practical application of HEVC encoding, it is necessary to significantly reduce the computational time of CU mode prediction. As described in this paper, under the proposed separated encoder structure, it is possible to decide the CU prediction mode without a full processing of the prediction and transformation to obtain a rate-distortion cost based on a suitable condition. Furthermore, to construct a suitable condition to improve the encoding speed, we employ a pseudo rate-distortion estimation based on a Hadamard transformation and a simple quantization. The experimental results show that the proposed method achieves a 38.68% reduction in the total encoding time with a similar coding performance to that of the HEVC reference model.

Perfonnance Analysis of the Combined AMC-MIMO Systems with MCS Level Selection Method (MCS 레벨 선택 방식에 따른 AMC-MIMO 결합 시스템의 성능 비교)

  • Hwang In-Tae;Kang Min-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.665-671
    • /
    • 2006
  • In this paper, we propose and observe a system that adopts Independent-MCS (Modulation and Coding Scheme) level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7dB{\sim}9dB$ SNR (Signal-to-Noise Ratio) range.

Evaluation of a Layered Coding Scheme for Integrated Mobile Satellite Systems (위성/지상 통합망에서의 계층적 부호화방식에 대한 고찰)

  • Shang, Pingping;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • This paper evaluates the performance and effectiveness of a layered coding scheme for an integrated mobile satellite systems, where the main target services are multimedia broadcasting and multicasting services (MBMS). In this integrated system, the satellite and complementary ground components (CGC) cooperate to provide high quality services. A layered coding scheme is a receiver driven adaptive schemes which adapts to the channel condition at the receiver. In this paper, we introduce a layered turbo coding scheme, and evaluates the performance in various scenarios, and discuss its effectiveness. The demonstrated results in the paper can be utilized in order to design an efficient integrated mobile satellite system, in the future.

3D video coding for e-AG using spatio-temporal scalability (e-AG를 위한 시공간적 계위를 이용한 3차원 비디오 압축)

  • 오세찬;이영호;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.199-202
    • /
    • 2003
  • In this paper, we propose a new 3D coding method for heterogeneous systems over enhanced Access Grid (e-AG) with 3D display using spatio-temporal scalability. The proposed encoder produces four bit-streams: one base layer and enhancement layer l, 2 and 3. The base layer represents a video sequence for left eye with lower spatial resolution. An enhancement layer l provides additional bit-stream needed for reproduction of frames produced in base layer with full resolution. Similarly, the enhancement layer 2 represents a video sequence for right eye with lower spatial resolution and an enhancement layer 3 provides additional bit-stream needed for reproduction of its reference pictures with full resolution. In this system, temporal resolution reduction is obtained by dropping B-frames in the receiver according to network condition. The receiver system can select the spatial and temporal resolution of video sequence with its display condition by properly combining bit-streams.

  • PDF

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Transformations and Their Analysis from a RGBD Image to Elemental Image Array for 3D Integral Imaging and Coding

  • Yoo, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2273-2286
    • /
    • 2018
  • This paper describes transformations between elemental image arrays and a RGBD image for three-dimensional integral imaging and transmitting systems. Two transformations are introduced and analyzed in the proposed method. Normally, a RGBD image is utilized in efficient 3D data transmission although 3D imaging and display is restricted. Thus, a pixel-to-pixel mapping is required to obtain an elemental image array from a RGBD image. However, transformations and their analysis have little attention in computational integral imaging and transmission. Thus, in this paper, we introduce two different mapping methods that are called as the forward and backward mapping methods. Also, two mappings are analyzed and compared in terms of complexity and visual quality. In addition, a special condition, named as the hole-free condition in this paper, is proposed to understand the methods analytically. To verify our analysis, we carry out experiments for test images and the results indicate that the proposed methods and their analysis work in terms of the computational cost and visual quality.

Channel Condition Adaptive Error Concealment using Scalability Coding (채널상태에 적응적인 계층 부호화를 이용한 오류 은닉 방법 연구)

  • Han Seung-Gyun;Park Seung-Ho;Suh Doug-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper: we propose the adaptive error concealment technique for scalable video coding over wireless network error prove environment. We prove it is very effective that Error concealment techniques proposed in this paper are applied to scalable video data. In this paper, we propose two methods of error concealment. First one is that the en·or is concealed using the motion vector of base layer and previous VOP data. Second one is that according to existence of motion vector in error position, the error is concealed using the same position data of base layer when the motion vector is existing otherwise using the same position data of previous VOP when the motion vector is 0(zero) adaptively. We show that according to various error pattern caused by condition of wireless network and characteristics of sequence, we refer decoder to base layer data or previous enhancement layer data to effective error concealment. Using scalable coding of MPEG-4 In this paper, this error concealment techniques are available to be used every codec based on DCT.

Multiple Description Coding of 3-D Data (3차원 데이터의 다중 부호화 기법)

  • Park, Sung-Bum;Kim, Chang-Su;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.840-848
    • /
    • 2007
  • A multiple description coding (MDC) scheme for 3-D Data is presented. First, a plane-based 3-D data is split into two descriptions, each of which has identical contribution in 3-D surface reconstruction. In order to maximize the visual quality of reconstructed 3-D data, then, plane parameters are modified according to channel error condition. Finally, these descriptions are compressed and transmitted over distinct channels. In decoder, if two descriptions are available, we reconstruct a high quality 3-D data. If only one description is transmitted, however, 3-D surface recovery scheme reduces artifacts on erroneous 3-D surface, yielding a smooth 3-D surface. Therefore, the proposed algorithm guarantees acceptable quality reconstruction of 3-D data even though one channel is totally lost.

Hardware Implementation of EBCOT TIER-1 for JPEG2000 Encoder (JPEG2000 Encoder를 위한 EBCOT Tier-1의 하드웨어 구현)

  • Lee, Sung-Mok;Jang, Won-Woo;Cho, Sung-Dae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • This paper presents the implementation of a EBCOT TIER-1 for JPEG2000 Encoder. JPEG2000 is new standard for the compression of still image for overcome the artifact of JPEG. JPEG2000 standard is based on DWT(Discrete Wavelet Transform) and EBCOT Entropy coding technology. EBCOT(Embedded block coding with optimized truncation) is the most important technology that is compressed the image data in the JPEG2000. However, EBCOT has the artifact because the operations are bit-level processing and occupy the harf of the computation time of JPEG2000 Compression. Therefore, in this paper, we present modified context extraction method for enhance EBCOT computational efficiency and implemented MQ- Coder as arithmetic coder. The proposed system is implemented by Verilog-HDL, under the condition of TSMC 0.25um ASIC library, gate counts are 30,511EA and satisfied the 50MHz operating condition.